冰箱中放有甲、乙兩種飲料各5瓶,每次飲用時從中任意取1瓶甲種或乙種飲料,取用甲種或乙種飲料的概率相等.

(1)求甲種飲料飲用完畢而乙種飲料還剩下3瓶的概率;

(2)求甲種飲料被飲用瓶數(shù)比乙種飲料被飲用瓶數(shù)至少多4瓶的概率.

解析:(1)由題意知,甲種已飲用5瓶,乙種已飲用2瓶.

記“飲用一次,飲用的是甲種飲料”為事件A,

則p=P(A)=.

題(1)即求7次獨(dú)立重復(fù)試驗(yàn)中事件A發(fā)生5次的概率為

P7(5)=p5(1-p)2=()7=.

(2)有且僅有3種情形滿足要求:

甲被飲用5瓶,乙被飲用1瓶;甲被飲用5瓶,乙沒有被飲用;甲被飲用4瓶,乙沒有被飲用.

所求概率為P6(5)+P5(5)+P4(4)=P5(1-P)+ P5+P4=.

答:甲飲料飲用完畢而乙飲料還剩3瓶的概率為,甲飲料被飲用瓶數(shù)比乙飲料被飲用瓶數(shù)至少多4瓶的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

冰箱中放有甲、乙兩種飲料各5瓶,每次飲用時從中任意取1瓶甲種或乙種飲料,取用甲種或乙種飲料的概率相等.
(1)求甲種飲料飲用完畢而乙種飲料還剩下3瓶的概率;
(2)求甲種飲料被飲用瓶數(shù)比乙種飲料被飲用瓶數(shù)至少多4瓶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

    冰箱中放有甲、乙兩種飲料各5瓶,每次飲用時從中任意取1瓶甲種或乙種飲料,取用甲種或乙種飲料的概率相等.

(Ⅰ)求甲種飲料飲用完畢而乙種飲料還剩下3瓶的概率;

(Ⅱ)求甲種飲料被飲用瓶數(shù)比乙種飲料被飲用瓶數(shù)至少多4瓶的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

冰箱中放有甲、乙兩種飲料各5瓶,每次飲用時從中任意取1瓶甲種或乙種飲料,取用甲種或乙種飲料的概率相等.
(1)求甲種飲料飲用完畢而乙種飲料還剩下3瓶的概率;
(2)求甲種飲料被飲用瓶數(shù)比乙種飲料被飲用瓶數(shù)至少多4瓶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):11.3 相互獨(dú)立事件同時發(fā)生的概率(解析版) 題型:解答題

冰箱中放有甲、乙兩種飲料各5瓶,每次飲用時從中任意取1瓶甲種或乙種飲料,取用甲種或乙種飲料的概率相等.
(1)求甲種飲料飲用完畢而乙種飲料還剩下3瓶的概率;
(2)求甲種飲料被飲用瓶數(shù)比乙種飲料被飲用瓶數(shù)至少多4瓶的概率.

查看答案和解析>>

同步練習(xí)冊答案