【題目】已知函數(shù).

1)若恒成立,求a的值;

2)在(1)的條件下,若,證明:;

3)若,證明:.

【答案】11;(2)證明見解析;(3)證明見解析.

【解析】

1)利用導(dǎo)數(shù)求函數(shù)的最小值,令最小值大于等于0,從而求得的值;

2)由(1)可得,令,利用導(dǎo)數(shù)求證函數(shù)的最小值大于等于0即可;

3)由(2)可得,當(dāng)時,,要證,只需證明,若,即,再利用換元法,結(jié)合導(dǎo)數(shù)進(jìn)行證明即可.

1)由題可得.

當(dāng)時,若,則,不滿足條件.

當(dāng)時,令,得.

∵當(dāng)時,,當(dāng)時,,

上單調(diào)遞減,在上單調(diào)遞增,

的最小值為

,由題意可知.

,得.

易知上單調(diào)遞增,在上單調(diào)遞減,

.

再結(jié)合式得.

2)由(1)可得.

,則.

,則上單調(diào)遞增,

上單調(diào)遞增,

,

.

3)由(2)可得,當(dāng)時,.

要證,只需證明.

,即,則題中不等式成立,下面證明.

,

求導(dǎo)得,

上單調(diào)遞增,

,

,即,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C的左、右頂點分別為右焦點為,右準(zhǔn)線l的方程為,過焦點F的直線與橢圓C相交于點A,B(不與點重合).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)當(dāng)直線AB的傾斜角為45°時,求弦AB的長;

3)設(shè)直線l于點M,求證:B,M三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省2020年高考將實施新的高考改革方案.考生的高考總成績由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、政治、歷史、地理6科中選擇3門作為選考科目,語文、數(shù)學(xué)、外語三科各占150分,選考科目成績采用賦分制,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為,,,,8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%,7%16%,24%,24%,16%7%,3%.等級考試科目成績計入考生總成績時,將等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到911008190,7180,61705160,41503140,2130八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.舉例說明:某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科等級的原始分分布區(qū)間為5869,則該同學(xué)化學(xué)學(xué)科的原始成績屬等級.而等級的轉(zhuǎn)換分區(qū)間為6170,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分計算方法為:設(shè)該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換等級分為,,求得.四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?/span>67.為給高一學(xué)生合理選科提供依據(jù),全省對六個選考科目進(jìn)行測試,某校高一年級2000人,根據(jù)該校高一學(xué)生的物理原始成績制成頻率分布直方圖(見右圖).由頻率分布直方圖,可以認(rèn)為該校高一學(xué)生的物理原始成績服從正態(tài)分布,用這2000名學(xué)生的平均物理成績作為的估計值,用這2000名學(xué)生的物理成績的方差作為的估計值.

1)若張明同學(xué)在這次考試中的物理原始分為86分,等級為,其所在原始分分布區(qū)間為8293,求張明轉(zhuǎn)換后的物理成績(精確到1);按高考改革方案,若從全省考生中隨機(jī)抽取100人,記表示這100人中等級成績在區(qū)間內(nèi)的人數(shù),求最有可能的取值(概率最大);

2)①求(同一組中的數(shù)據(jù)用該組區(qū)間的中點作代表);

②由①中的數(shù)據(jù),記該校高一學(xué)生的物理原始分高于84分的人數(shù)為,求

附:若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們知道,目前最常見的骰子是六面骰,它是一顆正立方體,上面分別有一到六個洞(或數(shù)字),其相對兩面之?dāng)?shù)字和必為七.顯然,擲一次六面骰,只能產(chǎn)生六個數(shù)之一(正上面).現(xiàn)欲要求你設(shè)計一個十進(jìn)制骰,使其擲一次能產(chǎn)生0~9這十個數(shù)之一,而且每個數(shù)字產(chǎn)生的可能性一樣.請問:你能設(shè)計出這樣的骰子嗎?若能,請寫出你的設(shè)計方案;若不能,寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時,周日測試

方式二:周六一天培訓(xùn)4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐PABCD的三視圖如下圖所示,E是側(cè)棱PC上的動點.

1)求證:BD⊥AE

2)若點EPC的中點,求二面角DAEB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù),設(shè)函數(shù)

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)對任意均有的取值范圍.

注:為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與圓相交于,兩點,且點的橫坐標(biāo)為.是拋物線的焦點,過焦點的直線與拋物線相交于不同的兩點,.

1)求拋物線的方程.

2)過點,作拋物線的切線,,的交點,求證:點在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.

1)已知,證明:平面平面;

2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案