已知函數(shù)

(1)設(shè),且,求的值;

(2)在△ABC中,AB=1,,且△ABC的面積為,求sinA+sinB的值.

 

(1),(2)

【解析】

試題分析:(1)研究三角函數(shù)性質(zhì),首先將三角函數(shù)化為基本三角函數(shù)形式,即:==.再由于是,因為,所以.(2)解三角形,基本方法利用正余弦定理進行邊角轉(zhuǎn)化. 因為△ABC的面積為,所以,于是.因為,由(1)知.由余弦定理得,所以.可得由正弦定理得,所以

【解】(1)==

,得,

于是,因為,所以

(2)因為,由(1)知

因為△ABC的面積為,所以,于是. ①

在△ABC中,設(shè)內(nèi)角A、B的對邊分別是a,b.

由余弦定理得,所以.  ②

由①②可得 于是

由正弦定理得,

所以

考點:三角函數(shù)性質(zhì),正余弦定理

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合,則Z= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測三數(shù)學(xué)試卷(解析版) 題型:解答題

已知實數(shù),函數(shù)。

(1)當時,討論函數(shù)的單調(diào)性;

(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;

(3)若當時,函數(shù)圖象上的點均在不等式,所表示的平面區(qū)域內(nèi),求實數(shù) 的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測三數(shù)學(xué)試卷(解析版) 題型:填空題

抽樣統(tǒng)計甲,乙兩個城市連續(xù)5天的空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)如下:

城市

空氣質(zhì)量指數(shù)(AQI)

第1天

第2天

第3天

第4天

第5天

109

111

132

118

110

110

111

115

132

112

 

則空氣質(zhì)量指數(shù)(AQI)較為穩(wěn)定(方差較小)的城市為 (填甲或乙).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),,其中m∈R.

(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;

(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) = g (x2) 成立,試確定實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:填空題

若中心在原點、焦點在坐標軸上的雙曲線的一條漸近線方程為,則此雙曲線的離心率為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:填空題

為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為01到50的袋裝奶粉中抽取5袋進行檢驗,現(xiàn)將50袋奶粉按編號順序平均分成5組,用每組選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的袋奶粉的編號,若第4組抽出的號碼為36,則第1組中用抽簽的方法確定的號碼是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù).在區(qū)間上隨機取一,則使得的概率為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省徐州市高三第三次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知圓柱的底面半徑為1,母線長與底面的直徑相等,則該圓柱的表面積為 .

 

查看答案和解析>>

同步練習(xí)冊答案