已知公差大于零的等差數(shù)列{an}的前n項和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項,求i的值;
(2)設(shè),是否存在一個最小的常數(shù)m使得b1+b2+…+bn<m對于任意的正整數(shù)n均成立,若存在,求出常數(shù)m;若不存在,請說明理由.
【答案】分析:(1)先利用方程組思想,確定等差數(shù)列{an}的通項,再利用1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項,建立方程,即可求i的值;
(2)求得數(shù)列的通項,利用裂項法求和,即可求得m的值.
解答:解:(1)由題意,∵a2•a4=65,a1+a5=18.
∴(a1+d)(a1+3d)=65,a1+a1+4d=18.
∵d>0,∴d=4,a1=1
∴an=4n-3,
∵a1,ai,a21是某等比數(shù)列的連續(xù)三項,
∴a1a21=
∴1•81=(4i-3)2
∵1<i<21,∴i=3;
(2)由(1)可得
==
∴b1+b2+…+bn=+…+)==
∵b1+b2+…+bn<m對于任意的正整數(shù)n均成立,

點評:本題考查等差數(shù)列與等比數(shù)列的綜合,考查數(shù)列的求和,確定數(shù)列的通項,正確運用求和公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列an的前n項和為Sn,且滿足:a3•a4=117,a2+a5=22.
(1)求數(shù)列an的通項公式an;
(2)若數(shù)列bn是等差數(shù)列,且bn=
Sn
n+c
,求非零常數(shù)c;
(3)若(2)中的bn的前n項和為Tn,求證:2Tn-3bn-1
64bn
(n+9)bn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足:a3•a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項公式an
(2)若數(shù)列{bn}是等差數(shù)列,且bn=
Snn+c
,求非零常數(shù)c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an},前n項和為Sn.且滿足a3a4=117,a2+a5=22.
(Ⅰ)求數(shù)列an的通項公式;
(2)若bn=
Sn
n-
1
2
,求f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足a3•a4=117,a2+a5=22,
(1)求通項an;
(2)若數(shù)列{bn}滿足bn=
Snn+c
,是否存在非零實數(shù)c,使得{bn}為等差數(shù)列?若存在,求出c的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺一模)已知公差大于零的等差數(shù)列{an}的前n項和Sn,且滿足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比數(shù)列的連續(xù)三項,求i的值;
(2)設(shè)bn=
n(2n+1)Sn
,是否存在一個最小的常數(shù)m使得b1+b2+…+bn<m對于任意的正整數(shù)n均成立,若存在,求出常數(shù)m;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案