(2013•嘉興一模)如圖,直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=
2
,AD=BD:EC丄底面ABCD,F(xiàn)D丄底面ABCD 且有EC=FD=2.
(Ⅰ)求證:AD丄BF;
(Ⅱ)若線段EC的中點為M,求直線AM與平面ABEF所成角的正弦值.
分析:(I)梯形ABCD中,根據(jù)勾股定理和等腰三角形的判定,可得∠ADB=90°即AD⊥BD,結合AD⊥DF利用線面垂直的判定定理,證出AD⊥平面BDF,進而可得AD丄BF;
(II)過點M作MN⊥BE,垂足為N,連接NA,AC.利用線面垂直的判定與性質,證出MN⊥平面ABEF,從而得到∠MAN就是直線AM與平面ABEF所成角.Rt△BCE中利用相似算出MN=
3
3
,分別在Rt△ABC、Rt△ACM中運用勾股定理,算出AM=
11
.最后在Rt△MAN中利用正弦的定義,即可算出直線AM與平面ABEF所成角的正弦值等于
33
33
解答:解:(I)∵BC⊥DC,BC=CD=
2
,
∴BD=
BC2+CD2
=2,且△BCD是等腰直角三角形,∠CDB=∠CBD=45°
∵平面ABCD中,AB∥DC,∴∠DBA=∠CBD=45°
∵AD=BD,可得∠DBA=∠BAD=45°
∴∠ADB=90°,即AD⊥BD
∵FD丄底面ABCD,AD?底面ABCD,∴AD⊥DF
∵BD、DF是平面BDF內的相交直線,∴AD⊥平面BDF
∵BF?平面BDF,∴AD丄BF
(II)如圖,過點M作MN⊥BE,垂足為N,連接NA,AC
∵AB⊥BC,AB⊥EC,BC∩EC=E,∴AB⊥平面BEC
∵MN?平面BEC,∴AB⊥MN,
結合MN⊥BE且BE∩AB=B,可得MN⊥平面ABEF
∴AN是AM在平面ABEF內的射影,可得∠MAN就是直線AM與平面ABEF所成角
∵Rt△ABC中,AC=
AB2+BC2
=
10
,∴Rt△ACM中,AM=
AC2+CM2
=
11

∵△EMN∽△EBC,∴
MN
BC
=
EN
EC
MN
BC
=
EM
EB
,可得MN=
3
3

因此,在Rt△MAN中,sin∠MAN=
MN 
AM
=
33
33

即直線AM與平面ABEF所成角的正弦值是
33
33
點評:本題給出由四棱錐與三棱錐組合而成的幾何體,求證線線垂直并求直線與平面所成角正弦值,著重考查了線面垂直的判定與性質和直線與平面所成角的求法等知識,屬于中檔題..
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•嘉興一模)已知在正項等比數(shù)列{an}中,a1=1,a2a4=16,則|a1-12|+|a2-12|+…+|a8-12|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興一模)已知a,b∈R,ab≠O,則“a>0,b>0”是“
a+b
2
ab
”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興一模)一個幾何體的三視圖如圖所示,則該幾何體的體積為
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興一模)已知函數(shù)f(x)=
1
2
x2-(2a+2)x+(2a+1)lnx

(I )求f(x)的單調區(qū)間;
(II)對任意的a∈[
3
2
,
5
2
],x1x2∈[1,2]
,恒有|f(x1)|-f(x2)≤λ|
1
x1
-
1
x2
|
,求正實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案