(2013•杭州一模)設(shè)α是第三象限角,且tanα=2,則
sin(
π
2
-α)cos(π+α)
sin(
2
+α)
=( 。
分析:由條件利用同角三角函數(shù)的基本關(guān)系求得cosα=-
5
5
,化簡(jiǎn)要求的式子為cosα,從而求得結(jié)果.
解答:解:∵α是第三象限角,且tanα=
sinα
cosα
=2,可得 sin2α+cos2α=1,可得 cosα=-
5
5

故 
sin(
π
2
-α)cos(π+α)
sin(
2
+α)
=
cosα•(-cosα)
-cosα
=cosα=-
5
5

故選B.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)若實(shí)數(shù)x,y滿(mǎn)足不等式組
y-x≥0
x+y-7≤0
,則2x+y的最大值為
21
2
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n-m的最小值為
1
3
,則實(shí)數(shù)a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}滿(mǎn)足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)a∈R,則“a=4”是“直線(xiàn)l1:ax+2y-3=0與直線(xiàn)l2:2x+y-a=0平行”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),則必定有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案