設(shè)函數(shù)f(x)=
1
3
x-lnx(x>0)
,則函數(shù)f(x)( 。
A、在區(qū)間(0,1),(1,+∞)內(nèi)均有零點(diǎn)
B、在區(qū)間(0,1),(1,+∞)內(nèi)均無(wú)零點(diǎn)
C、在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無(wú)零點(diǎn)
D、在區(qū)間(0,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
分析:求導(dǎo),求得函數(shù)的單調(diào)區(qū)間在(0,3)單調(diào)遞減,3,+∞)單調(diào)遞增,當(dāng)x=3時(shí),f(x)取最小值1-ln3<0,根據(jù)單調(diào)性和最值以及f(1)=
1
3
>0.確定答案.
解答:解:∵函數(shù)f(x)=
1
3
x-lnx(x>0)

f′(x)=
1
3
-
1
x
=
x-3
3x
=0,得x=3
∴當(dāng)x∈(0,3)時(shí),f′(x)<0,f(x)在(0,3)單調(diào)遞減,
當(dāng)x∈(3,+∞)時(shí),f′(x)>0,f(x)在(3,+∞)單調(diào)遞增,
∴當(dāng)x=3時(shí),f(x)取最小值1-ln3<0,
f(1)=
1
3
>0.
∴f(x)在區(qū)間(0,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn),
故選D.
點(diǎn)評(píng):此題是中檔題.考查函數(shù)的零點(diǎn)判定定理和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值問(wèn)題,同時(shí)了學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時(shí),過(guò)原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a<
1
2
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對(duì)數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•株洲模擬)設(shè)x0是函數(shù)f(x)=(
1
3
)x-log2x
的零點(diǎn).若0<a<x0,則f(a)的值滿足(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍為
a>1或a<-2
a>1或a<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
(a-1)x3-
1
2
ax2+x
(a∈R)[
(Ⅰ)若y=f(x)在點(diǎn)(1,f(1))處的切線與y軸和直線x-2y=0圍成的三角形面積等于
1
4
,求a的值;
(II)當(dāng)a<2時(shí),討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案