已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823231631452433.png" style="vertical-align:middle;" />,且同時(shí)滿足下列條件:
(1)是奇函數(shù);
(2)在定義域上單調(diào)遞減;
(3)的取值范圍。
本題以抽象函數(shù)為例,在已知函數(shù)的單調(diào)性和奇偶性的前提下,解關(guān)于x的不等式,著重考查了函數(shù)的定義域和函數(shù)的簡(jiǎn)單性質(zhì)等知識(shí)點(diǎn),屬于基礎(chǔ)題.根據(jù)函數(shù)f(x)的定義域?yàn)椋?7,7),原不等式的自變量應(yīng)該在這個(gè)范圍內(nèi),由此得-1<a<6.又因?yàn)閒(x)是奇函數(shù),且在定義域上單調(diào)遞減,所以原不等式轉(zhuǎn)化為1-a>1-a2,解之得a>4,結(jié)合前面求出的大前提,取交集可得實(shí)數(shù)a的取值范圍.
解:,則,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)判斷的奇偶性;
(Ⅱ)設(shè)函數(shù)在區(qū)間上的最小值為,求的表達(dá)式;
(Ⅲ)若,證明:方程有兩個(gè)不同的正數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中
(1) 判斷的奇偶性;
(2) 判斷上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù) 
(1)判斷函數(shù)的奇偶性和單調(diào)性;
(2)當(dāng)時(shí),有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823231638596564.png" style="vertical-align:middle;" />,對(duì)于任意正實(shí)數(shù)恒有,且當(dāng)時(shí),
(1)求的值;    
(2)求證:上是增函數(shù);
(3)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在區(qū)間[1,2]上都是減函數(shù),則的取值范圍是( )
A.(0,1)B.(0,1
C.(-1,0)∪(0,1)D.(-1,0) ∪(0,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,既是偶函數(shù),又是區(qū)間上的增函數(shù)的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=loga(x2+2x-3),當(dāng)x=2時(shí),y>0,則此函數(shù)單調(diào)遞減區(qū)間是(    )
A.(-∞,-1)B.(-1,+∞)C.(-∞,-3)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),則使為奇函數(shù)且在單調(diào)遞減的的值的個(gè)數(shù)是( 。
A.1B.2 C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案