若函數(shù)在(a,2-a2)上有最大值,實(shí)數(shù)a的取值范圍為_(kāi)_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
|
10-x |
10+x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省南通市海門(mén)市2008屆高三第一次診斷性考試數(shù)學(xué)(理) 題型:013
設(shè)函數(shù)y=f(x)=ax3+bx2+cx+d的圖像與y軸的交點(diǎn)為P點(diǎn),曲線在點(diǎn)P處的切線方程為12x-y-4=0.若函數(shù)在x=2處取得極值0,則函數(shù)的單調(diào)減區(qū)間為
A.(1,2)
B.(-∞,1)
C.(2,+∞)
D.(-2,-1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
.
(Ⅰ)若函數(shù)和函數(shù)
在區(qū)間
上均為增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若方程有唯一解,求實(shí)數(shù)
的值.
【解析】第一問(wèn),
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當(dāng)時(shí)
,
在
上均為增函數(shù)
(Ⅱ)中方程有唯一解
有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個(gè)極小值,
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當(dāng)時(shí)
,
在
上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解
有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個(gè)極小值,
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)在(0,+∞)上是增函數(shù),則a的取值范圍是
A.-2<a<-1或1<a<2 B. -2<a<2
C.1<a<2 D.a<-2或a>2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com