11.已知A1,A2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$長軸的兩個端點,B是它短軸的一個端點,如果$\overrightarrow{B{A_1}}$與$\overrightarrow{B{A_2}}$的夾角不小于$\frac{2π}{3}$,則該橢圓的離心率的取值范圍是$[\frac{{\sqrt{6}}}{3},1)$.

分析 利用向量夾角公式、三角函數(shù)的單調(diào)性即可得出.

解答 解:取A1(-a,0),A2(a,0),B(0,b).
$\overrightarrow{B{A_1}}$=(-a,-b),$\overrightarrow{B{A_2}}$=(a,-b).
∵$\overrightarrow{B{A_1}}$與$\overrightarrow{B{A_2}}$的夾角不小于$\frac{2π}{3}$,
∴$cos<\overrightarrow{B{A}_{1}},\overrightarrow{B{A}_{2}}>$=$\frac{\overrightarrow{B{A}_{1}}•\overrightarrow{B{A}_{2}}}{|\overrightarrow{B{A}_{1}}||\overrightarrow{B{A}_{2}}|}$=$\frac{-{a}^{2}+^{2}}{\sqrt{{a}^{2}+^{2}}\sqrt{{a}^{2}+^{2}}}$≤$cos\frac{2π}{3}$=-$\frac{1}{2}$,
化為:a2≥3b2
∴e=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$≥$\frac{\sqrt{6}}{3}$,又0<e<1.
∴e∈$[\frac{{\sqrt{6}}}{3},1)$.
故答案為:$[\frac{{\sqrt{6}}}{3},1)$.

點評 本題考查了橢圓的標準方程及其性質(zhì)、向量夾角公式、數(shù)量積運算性質(zhì)、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.式子[(-2)3]${\;}^{\frac{1}{3}}$-(-1)0=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)y=2x-1+x-1的零點為x0,則x0∈(  )
A.(-1,0)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=$\sqrt{x-1}$+$\sqrt{2-x}$的定義域為[1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)和圓O:x2+y2=b2,過雙曲線C上一點P引圓O的兩條切線,切點分別為A,B,若△PAB可為正三角形,則雙曲線C的離心率e的取值范圍是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{3}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為1,2,3.從袋子中任取4個球(假設取到任何一個球的可能性相同).
(1)求取出的4個球中,含有編號為3的球的概率;
(2)在取出的4個球中,紅球編號的最大值設為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn=n2an(n∈N*).
(1)寫出S1,S2,S3,S4,并猜想Sn的表達式;
(2)用數(shù)學歸納法證明你的猜想,并求出an的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若函數(shù)f(x)=sin(ωx+$\frac{π}{6}$),(ω>0)最小正周期為π,則f($\frac{π}{3}$)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}、{bn}滿足an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個零點,且a1=1,則b10=(  )
A.24B.32C.48D.64

查看答案和解析>>

同步練習冊答案