非零兩復(fù)數(shù)z1、z2分別對(duì)應(yīng)向量、,若?|z1+z2|=|z1-z2|,則向量的關(guān)系是?(  )

A. =

B.||=||

C.

D. 共一條直線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意兩個(gè)復(fù)數(shù)z1=x1+y1i,z2=x2+y2i(x1、y1、x2、y2為實(shí)數(shù)),定義運(yùn)算⊙為:
z1⊙z2=x1x2+y1y2.設(shè)非零復(fù)數(shù)w1、w2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為P1、P2,點(diǎn)為O為坐標(biāo)原點(diǎn).如果w1⊙w2=0,那么在△P1OP2中,∠P1OP2的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•朝陽(yáng)區(qū)一模)設(shè)z1,z2是兩個(gè)非零復(fù)數(shù),且|z1+z2|=|z1-z2|;設(shè)復(fù)數(shù)z=z1+z2,在復(fù)平面內(nèi)與復(fù)數(shù)z、z1、z2對(duì)應(yīng)的向量分別為
OZ
、
OZ1
OZ2

(Ⅰ)在復(fù)平面內(nèi)畫(huà)出向量
OZ
、
OZ1
OZ2
,并說(shuō)出以O(shè)、Z1、Z、Z2為頂點(diǎn)的四邊形的名稱;
(Ⅱ)求證:(
z1
z2
)2
是負(fù)實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-1-2蘇教版 蘇教版 題型:022

復(fù)數(shù)間的關(guān)系

(1)復(fù)數(shù)相等

①用代數(shù)形式描述:

z1=a+bi,z2=c+di(a、b、c、d∈R),

則z1=z2________.

特殊的,a+bi=0________.

兩個(gè)復(fù)數(shù)不都是實(shí)數(shù)時(shí),________比較大。

②用幾何形式描述:

z1、z2C,z1=z2對(duì)應(yīng)點(diǎn)Z1、Z2________________.

(2)共軛復(fù)數(shù)

①定義:若兩個(gè)復(fù)數(shù)實(shí)部________,虛部________時(shí),這兩個(gè)復(fù)數(shù)叫做互為共軛復(fù)數(shù),用________表示.

②代數(shù)形式:a+bi與________互為共軛復(fù)數(shù)(a、b∈R),即z=a+bi=________.

③幾何描述:非零復(fù)數(shù)z1、z2互為共軛復(fù)數(shù)它們的對(duì)應(yīng)點(diǎn)Z1、Z2(或?qū)?yīng)向量、)關(guān)于________對(duì)稱.

④運(yùn)算性質(zhì):

=________;

=________;

=________(z2≠0).

特例:z+=________;z-=________;z·=________;

z=是z∈R的________條件;

z+=0,且z≠0是z為純虛數(shù)的________條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意兩個(gè)復(fù)數(shù)z1=x1+y1i,z2=x2+y2i(x1y1、x2、y2為實(shí)數(shù)),定義運(yùn)算“⊙”為z1z2=x1x2+y1y2,設(shè)非零復(fù)數(shù)w1、w2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為P1、P2,點(diǎn)O為坐標(biāo)原點(diǎn),如果w1w2=0,那么△P1OP2中,∠P1OP2的大小為         .

查看答案和解析>>

同步練習(xí)冊(cè)答案