已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)證明:對一切x∈(0,+∞),都有數(shù)學公式成立.

(1)解:函數(shù)的定義域為(0,+∞)
求導函數(shù),可得f'(x)=lnx+1,…(1分)
單調(diào)遞減,
單調(diào)遞增 …(2分)
,即時,; …(4分)
,即時,f(x)在[t,t+2]上單調(diào)遞增,f(x)min=f(t)=tlnt; …(5分)
所以…(6分)
(2)證明:由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,當且僅當時取到.
設(shè),則,
∵x∈(0,1)時,m′(x)>0,x∈(1,+∞)時,m′(x)<0,
,當且僅當x=1時取到…(10分)
從而對一切x∈(0,+∞),都有成立. …(12分)
分析:(1)求出f′(x),確定函數(shù)的單調(diào)性,再結(jié)合[t,t+2](t>0)決定函數(shù)在[t,t+2](t>0)上的增減性,然后得到函數(shù)的最小值即可;
(2)分別求出左右兩邊對應(yīng)函數(shù)的最值,根據(jù)最值的關(guān)系即可證得結(jié)論.
點評:本題重點考查導數(shù)知識的運用,考查利用導數(shù)確定函數(shù)的單調(diào)性,求函數(shù)的最值,其中不等式的證明的關(guān)鍵是判斷函數(shù)的最值關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案