已知橢圓
上一點
關(guān)于原點
的對稱點為
為其右焦點,若
設(shè)
且
則橢圓離心率的取值范圍是
.
試題分析:左焦點為
.連結(jié)
可得四邊形
是矩形,所以
.所以
又
所以.
.又因為
,
.所以
.即
.因為
所以
.所以
.故填
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知動點P與平面上兩定點
連線的斜率的積為定值
.
(1)試求動點P的軌跡方程C.
(2)設(shè)直線
與曲線C交于M、N兩點,當|MN|=
時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,焦距為
的橢圓
的兩個頂點分別為
和
,且
與n
,
共線.
(1)求橢圓
的標準方程;
(2)若直線
與橢圓
有兩個不同的交
點
和
,且原點
總在以
為直徑的圓的內(nèi)部,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
上一點
到右焦點的距離是1,則點
到左焦點的距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
:
的短軸長為2,離心率為
,設(shè)過右焦點的直線
與橢圓
交于不同的兩點A,B,過A,B作直線
的垂線AP,BQ,垂足分別為P,Q.記
, 若直線l的斜率
≥
,則
的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
F1,
F2分別為橢圓
C1:
=1(
a>
b>0)的上下焦點,其中
F1是拋物線
C2:
x2=4
y的焦點,點
M是
C1與
C2在第二象限的交點,且|
MF1|=
.
(1)試求橢圓
C1的方程;
(2)與圓
x2+(
y+1)
2=1相切的直線
l:
y=
k(
x+
t)(
t≠0)交橢圓于
A,
B兩點,若橢圓上一點
P滿足
,求實數(shù)
λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
l交橢圓4
x2+5
y2=80于
M,
N兩點,橢圓與
y軸的正半軸交于
B點,若△
BMN的重心恰好落在橢圓的右焦點上,則直線
l的方程是 ( ).
A.6x-5y-28=0 | B.6x+5y-28=0 |
C.5x+6y-28=0 | D.5x-6y-28=0 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
,
是橢圓
的左、右焦點,過
的直線交橢圓于
兩點,若△
的周長為
,則
的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知F
1,F(xiàn)
2是橢圓
+
=1的兩焦點,過點F
2的直線交橢圓于A,B兩點.在△AF
1B中,若有兩邊之和是10,則第三邊的長度為( )
查看答案和解析>>