已知,,則的值為( )
A.
B.
C.
D.
A
【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719495723936647/SYS201411171949573955216311_DA/SYS201411171949573955216311_DA.001.png">,所以,所以,即.又,所以,即.又,故應(yīng)選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科判斷兩直線(xiàn)平行或垂直(解析版) 題型:選擇題
m=-1是直線(xiàn)mx+(2m-1)y+1=0和直線(xiàn)3x+my+2=0垂直的( ).
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科傾斜角與斜率(解析版) 題型:選擇題
已知A(1,0),B(2,a),C(a,1),若A,B,C三點(diǎn)共線(xiàn),則實(shí)數(shù)a的值為( )
A.2 B.-2
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)的概念(解析版) 題型:選擇題
若扇形的面積為8,當(dāng)扇形的周長(zhǎng)最小時(shí),扇形的中心角為( )
A. 1
B. 2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)的圖像、最值、單調(diào)性、對(duì)稱(chēng)性(解析版) 題型:選擇題
已知函數(shù),則函數(shù)的單調(diào)遞減區(qū)間為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科三視圖(解析版) 題型:選擇題
某幾何體的三視圖如下圖所示,它的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(四)(解析版) 題型:解答題
已知函數(shù)f(x)=ln x-ax+1在x=2處的切線(xiàn)斜率為-.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=,對(duì)?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(四)(解析版) 題型:選擇題
已知α,β表示兩個(gè)不同的平面,m是一條直線(xiàn)且m?α,則:“α⊥β”是“m⊥β”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:選擇題
已知a≤+ln x對(duì)任意x∈[,2]恒成立,則a的最大值為( )
A.0 B.1 C.2 D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com