設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+Sn+1=2n2+2n+1(n∈N+
(1)若{an}是等差數(shù)列,求a8
(2)若a1=1,求S100
考點(diǎn):數(shù)列的求和,等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1|)首先根據(jù)數(shù)列的特殊項(xiàng),先確定數(shù)列的通項(xiàng)公式,進(jìn)一步求出結(jié)果.
(2)利用已知條件求出數(shù)列是等差數(shù)列,進(jìn)一步求出前n項(xiàng)和公式,最后確定結(jié)果.
解答: 解(1)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+Sn+1=2n2+2n+1(n∈N+),
當(dāng)n=1時(shí),S1+S2=2+2+1=5
當(dāng)n=2時(shí),S2+S3=8+4+1=13
由于:{an}是等差數(shù)列,
所以:
2a1+a2=5
2a1+2a2+a3=13
2a2=a1+a3

解得:
a1=1
a2=3

所以公差d=2
則:數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d=2n-1
所以:a8=2×8-1=15
(2)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+Sn+1=2n2+2n+1
當(dāng)n=1時(shí),a1=1,解得:a2=3
當(dāng)n=2時(shí),a3=5
進(jìn)一步解得:a4=7

所以:數(shù)列{an}為等差數(shù)列
則:an=2n-1
所以:Sn=
n(1+2n-1)
2
=n2

則:S100=1002=10000
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法,數(shù)列的前n項(xiàng)和的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
3
,且當(dāng)n≥2時(shí),an=
an-1
2-an-1

(1)求證:數(shù)列{
1
an
-1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:對(duì)任意的正整數(shù)n都有
2
3
(1-
1
2n
)≤Sn
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(-x),且xf'(x)<0,設(shè)a=f(log47),b=f(log
1
2
3)
c=f(216),則a,b,c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin2θ=
1
3
,則tanθ+cotθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與雙曲線
x2
m
+
y2
n
=1(mn<0)共軛的雙曲線方程是(  )
A、-
x2
m
+
y2
n
=1
B、
x2
m
-
y2
n
=1
C、
x2
m
-
y2
n
=-1
D、
x2
m
+
y2
n
=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an},{bn}中,a1=3,b1=5,an+1=
bn+4
2
,bn+1=
an+4
2
(n∈N*
(1)求數(shù)列{bn-an}、{an+bn}的通項(xiàng)公式.
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)的和,若對(duì)任意n∈N*,都有p(Sn-4n)∈([1,3],求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸的橢圓C.它的離心率為
1
2
且曲線C過點(diǎn)(0,
3
).
(1)求橢圓C的方程.
(2)過點(diǎn)D(1,0)作一條直線與曲線C交于A,B兩點(diǎn).過A,B作直線x=4的垂線,垂足依次為M,N.求證:直線AN與BM交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記max{x,y}=
x,x≥y
y,x<y
,min{x,y}=
y,x≥y
x,x<y
,設(shè)
a
,
b
為平面向量,則( 。
A、max{|
a
+
b
|2,|
a
-
b
|2}≥|
a
|2+|
b
|2
B、max{|
a
+
b
|2,|
a
-
b
|2}≤|
a
|2+|
b
|2
C、min{|
a
+
b
|,|
a
-
b
|}≤min{|
a
|,|
b
|}
D、min{|
a
+
b
|,|
a
-
b
|}≥min{|
a
|,|
b
|}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(2x2-3x+1),g(x)=loga(x2+2x-5)(a>0,a≠1),若f(x)>g(x),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案