集合A={y|y=lgx,x>1},B={-2,-1,1,2}則下列結(jié)論正確的是( )
A.A∩B={-2,-1}
B.(CRA)∪B=(-∞,0)
C.A∪B=(0,+∞)
D.(CRA)∩B={-2,-1}
【答案】分析:由題意A={y|y=lgx,x>1},根據(jù)對數(shù)的定義得A={y|>0},又有B={-2,-1,1,2},對A、B、C、D選項進行一一驗證.
解答:解:∵A={y|y=lgx,x>1},
∴A={y|y>0},∵B={-2,-1,1,2}
A∩B={1,2},故A錯誤;
(CRA)∪B=(-∞,0],故B錯誤;
∵-1∈A∪B,∴C錯誤;
(CRA)={y|y≤0},又B={-2,-1,1,2}
∴(CRA)∩B={-2,-1},
故選D.
點評:此題主要考查對數(shù)的定義及集合的交集及補集運算,一元二次不等式的解法及集合間的交、并、補運算是高考中的?純(nèi)容,要認真掌握,并確保得分.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列說法正確的為
①③④⑤
①③④⑤

①函數(shù)y=f(x)與直線x=1的交點個數(shù)為0或l;
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④函數(shù)y=lg(x2+x+a)的值域為R 的充要條件是:a∈(-∞,
14
]
;
⑤與函數(shù)y=f(x)-2關(guān)于點(1,-1)對稱的函數(shù)為y=-f(2-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}⊆A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)當n=4時,判斷下列兩個集合組是否具有性質(zhì)P,如果是請畫出所對應的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當n=7時,若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應的7行3列的一個數(shù)表,再依此表格分別寫出集合A1,A2,A3
(Ⅲ)當n=100時,集合組A1,A2,…,At是具有性質(zhì)P且所含集合個數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=2x,x∈R},B={x|y=lg(1-x)},則A∩B為(  )
A、(-∞,l)B、(0,+∞)C、(0,1)D、(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考百天仿真沖刺數(shù)學試卷7(理科)(解析版) 題型:解答題

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}⊆A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl=n=7.
a11a12a1m
a21a22a2m
an1an2anm
(Ⅰ)當n=4時,判斷下列兩個集合組是否具有性質(zhì)P,如果是請畫出所對應的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當n=7時,若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應的7行3列的一個數(shù)表,再依此表格分別寫出集合A1,A2,A3
(Ⅲ)當n=100時,集合組A1,A2,…,At是具有性質(zhì)P且所含集合個數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:2011年北京市西城區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

若A1,A2,…,Am為集合A={1,2,…,n}(n≥2且n∈N*)的子集,且滿足兩個條件:
①A1∪A2∪…∪Am=A;
②對任意的{x,y}⊆A,至少存在一個i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.則稱集合組A1,A2,…,Am具有性質(zhì)P.
如圖,作n行m列數(shù)表,定義數(shù)表中的第k行第l列的數(shù)為akl=n=7.
a11a12a1m
a21a22a2m
an1an2anm
(Ⅰ)當n=4時,判斷下列兩個集合組是否具有性質(zhì)P,如果是請畫出所對應的表格,如果不是請說明理由;
集合組1:A1={1,3},A2={2,3},A3={4};
集合組2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)當n=7時,若集合組A1,A2,A3具有性質(zhì)P,請先畫出所對應的7行3列的一個數(shù)表,再依此表格分別寫出集合A1,A2,A3;
(Ⅲ)當n=100時,集合組A1,A2,…,At是具有性質(zhì)P且所含集合個數(shù)最小的集合組,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的個數(shù))

查看答案和解析>>

同步練習冊答案