分析 (1)利用基本不等式,即可證明;
(2)利用ab+ac+bc≤a2+b2+c2即可得出.
解答 (1)證明:∵a、b均為正實數(shù),
∴$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$≥$\frac{2}{ab}$,
∵$\frac{2}{ab}$+ab$≥2\sqrt{2}$,
∴$\frac{1}{a^2}+\frac{1}{b^2}+ab≥2\sqrt{2}$(當且僅當a=b時取等號)
(2)∵(a-b)2≥0,(a-c)2≥0,(b-c)2≥0,
∴ab+ac+bc≤a2+b2+c2=4,當且僅當a=b=c時取等號.
∴ab+bc+ca的最大值是4.
點評 本題考查了基本不等式的性質(zhì),考查不等式的證明,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\left\{x|-\frac{1}{3}<x<1\right\}$ | B. | {x|x<1} | C. | $\left\{x|x>-\frac{1}{3}\right\}$ | D. | $\left\{x|x>1或x<-\frac{1}{3}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com