精英家教網 > 高中數學 > 題目詳情

如圖所示,在直角坐標系的第一象限內,△AOB是邊長為2的等邊三角形,設直線x=t(0≤t≤2)截這個三角形可得位于此直線左方的圖形(陰影部分)的面積為f(t),則函數y=f(t)的圖象(如下圖所示)大致是

[  ]

A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,在直角坐標平面上的矩形OABC中,|OA|=2,| OC |=
3
,點P,Q滿足
OP
=
λOA
,
AQ
=( 1-λ )
AB
  ( λ∈R )
,點D是C關于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標平面內,反比例函數的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數解析式;如果不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年湖南省高考適應性測試數學試卷(文科)(解析版) 題型:解答題

如圖所示,在直角坐標平面上的矩形OABC中,|OA|=2,,點P,Q滿足,,點D是C關于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學模擬試卷(文科)(解析版) 題型:解答題

如圖所示,在直角坐標平面上的矩形OABC中,|OA|=2,,點P,Q滿足,,點D是C關于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省連云港市東海高級中學高考數學考前猜題試卷(1)(解析版) 題型:解答題

如圖所示,在直角坐標平面上的矩形OABC中,|OA|=2,,點P,Q滿足,點D是C關于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F兩點,求△AEF的面積的最大值.

查看答案和解析>>

同步練習冊答案