3.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}}\right.$,則z=2x+y的最大值為( 。
A.1B.2C.3D.4

分析 作出可行域,平移目標(biāo)直線可得取最值時的條件,求交點(diǎn)代入目標(biāo)函數(shù)即可.

解答 解:(如圖)作出$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$可行域,
當(dāng)目標(biāo)直線過直線x+y-2=0與直線y=0的交點(diǎn)A(2,0)時取最大值,
故最大值為z=2×2+0=4
故選:D.

點(diǎn)評 本題考查簡單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知tan(π-α)=a2,|cos(π-α)|=-cosα,求$\frac{1}{cos(π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三棱錐P-ABC中,PB⊥地面ABC,∠BCA=90°,E,M分別為PC,AB的中點(diǎn),點(diǎn)F在PA上,且AF=2FP.
(1)求證:AC⊥平面PBC;
(2)求證:CM∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知四棱錐P-ABCD的底面為矩形,PA⊥底面ABCD,且PA=AD=1,AB=$\sqrt{2}$,點(diǎn)E,F(xiàn)分別為AB、PC中點(diǎn).
(1)求證:EF⊥PD;
(2)求點(diǎn)E到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知如圖(1)的圖象對應(yīng)的函數(shù)為y=f(x),給出①y=f(|x|);②y=|f(x)|-a;③y=-f(|x|);④y=f(-|x|).⑤y=|f(|x|)|-a,則如圖(2)的圖象對應(yīng)的函數(shù)可能是五個式子中的( 。
A.B.②④C.①②D.②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知R是實(shí)數(shù)集,集合P={m∈R|mx2+4mx-4<0對?x∈R都成立},Q={x|y=ln(x2+2x)},則(∁RP)∩(∁RQ)=(  )
A.{x|-2≤x≤-1}B.{x|-2≤x≤-1或x=0}C.{x|-2≤x<-1}D.{x|-2≤x<-1或x=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在一次射擊訓(xùn)練中,某戰(zhàn)士連續(xù)射擊了兩次.設(shè)命題p是“第一次射擊擊中目標(biāo)”,q是“第二次射擊擊中目標(biāo)”.則命題“兩次都沒有擊中目標(biāo)”用p,q及邏輯聯(lián)結(jié)詞可以表示為¬p∧¬q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=$\left\{\begin{array}{l}{1,(x∈Q)}\\{0,(x∈{∁}_{R}Q)}\end{array}\right.$,則f(e)=( 。ㄆ渲衑是自然對數(shù)的底數(shù))
A.0B.1C.0或1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.從甲、乙、丙3名候選學(xué)生中選2名作為青年志愿者,則甲被選中的概率為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案