由曲線x2=4y,x2=-4y,x=4,x=-4圍成圖形繞y軸旋轉(zhuǎn)一周所得為旋轉(zhuǎn)體的體積為V1,滿足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的點(x,y)組成的圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V2,則( )
A.V1=V2
B.V1=V2
C.V1=V2
D.V1=2V2
【答案】分析:由題意可得旋轉(zhuǎn)體夾在兩相距為8的平行平面之間,用任意一個與y軸垂直的平面截這兩個旋轉(zhuǎn)體,設(shè)截面與原點距離為|y|,求出所得截面的面積相等,利用祖暅原理知,兩個幾何體體積相等.
解答:解:如圖,兩圖形繞y軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體夾在兩相距為8的平行平面之間,
用任意一個與y軸垂直的平面截這兩個旋轉(zhuǎn)體,設(shè)截面與原點距離為|y|,所得截面面積 S1=π(42-4|y|),
S2=π(42-y2)-π[4-(2-|y|)2]=π(42-4|y|)
∴S1=S2,由祖暅原理知,兩個幾何體體積相等,
故選C.
點評:本題主要考查祖暅原理的應(yīng)用,求旋轉(zhuǎn)體的體積的方法,體現(xiàn)了等價轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由曲線x2=4y,x2=-4y,x=4,x=-4圍成圖形繞y軸旋轉(zhuǎn)一周所得為旋轉(zhuǎn)體的體積為V1,滿足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的點(x,y)組成的圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為V2,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:022

平移坐標(biāo)軸, 原點移到(______,______)處時, 曲線的方程由x2 - y2 - 2x + 4y - 4 = 0變?yōu)閤'2- y'2 = 1.

查看答案和解析>>

同步練習(xí)冊答案