如圖,在四棱錐P-ABCD中,已知PA⊥底面ABCD,PA=1,底面ABCD是正方形,PC與底面ABCD所成角的大小為
π
6
,則該四棱錐的體積是
 
考點(diǎn):棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:根據(jù)幾何體的性質(zhì)得出Rt△PAC中,PA=1,∠PCA=
π
6
,AC=
3
,運(yùn)用體積公式求解即可.
解答: 解:∵PA⊥底面ABCD,底面ABCD是正方形,
PC與底面ABCD所成角的大小為
π
6

∴Rt△PAC中,PA=1,∠PCA=
π
6

AC=
3
,
∵底面ABCD是正方形,
∴AB=
6
2
,
V=
1
3
×
6
2
×
6
2
×1=
1
2

故答案為:
1
2
;
點(diǎn)評:本題考查了空間直線平面的幾何性質(zhì),夾角,體積計算問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=
1
4
x-1與橢圓
x2
4
+
y2
a2
=1相切,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是不共線的三點(diǎn),
m
AB
是平行向量,與
BC
是共線向量,則
m
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=a-x在定義域(-∞,+∞)上單調(diào)遞增; 命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.
(1)若P∨Q是真命題,求實數(shù)a的取值范圍;
(2)已知函數(shù)f(x)=a-x在定義域(-∞,+∞)上單調(diào)遞增,且m∈(-∞,+∞),寫出命題:“若m+1>0,則f(m)+f(1)>f(-m)+f(-1)”的逆命題.否命題.逆否命題,并分別判斷逆命題.否命題.逆否命題的真假(不要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面命題中,真命題的( 。
A、?x∈R,3x2>x2
B、Vx∈R,2x>x2
C、a-b=0的充要條件是
a
b
=-1
D、a>1,b=1是ab>1的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在邊長為1的正三角形ABC的邊BC上有n(n∈N*,n≥2)等分點(diǎn),沿向量
BC
的方向依次為P1,P2,…,Pn,記Tn=
AB
AP1
+
AP1
AP2
+…+
APn-1
AC
,若給出四個數(shù)值:①
29
4
91
10
197
18
 ④
232
33
,則Tn的值不可能共有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
3
sin2x+sinxcosx.
(1)求f(
25
6
π)的值;
(2)若x∈(-
π
2
π
2
)且f(x)=0,求sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件:
x+y≥3
x-y≥-1
2x-y≤3
,則目標(biāo)函數(shù)z=
y+1
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an},a2+a3+a4=9,且a2+1,a3+3,a4+8為等比數(shù)列{bn}的前三項,求{an}、{bn}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案