(2007•廣州二模)函數(shù)f(x)=sin(ωx+?),(x∈R,ω>0,0≤?<2π)的部分圖象如圖所示,則ω=
π
4
π
4
 ?=
π
4
π
4
分析:根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后求出φ,利用(1,1)求出φ即可.
解答:解:由函數(shù)的圖象可知,T=4×(3-1)=8,
所以φ=
8
=
π
4
;
因?yàn)楹瘮?shù)圖象過( 1,1),
所以1=sin(
π
4
×1
+φ),0≤φ<2π,
所以φ=
π
4

故答案為:
π
4
;
π
4
點(diǎn)評:本題是基礎(chǔ)題,考查三角函數(shù)的圖象及其性質(zhì),三角函數(shù)的周期的求法,考查計(jì)算能力,?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州二模)已知曲線C:y=ex(其中e為自然對數(shù)的底數(shù))在點(diǎn)P(1,e)處的切線與x軸交于點(diǎn)Q1,過點(diǎn)Q1作x軸的垂線交曲線C于點(diǎn)P1,曲線C在點(diǎn)P1處的切線與x軸交于點(diǎn)Q2,過點(diǎn)Q2作x軸的垂線交曲線C于點(diǎn)P2,…,依次下去得到一系列點(diǎn)P1、P2…、Pn,設(shè)點(diǎn)Pn的坐標(biāo)為(xn,yn)(n∈N*).
(Ⅰ)分別求xn與yn的表達(dá)式;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求
n
i=1
O
P
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州二模)某個路口的交通指示燈,紅燈時間為30秒,黃燈時間為10秒,綠燈時間為40秒.當(dāng)你到達(dá)路口時,遇到紅燈的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州二模)如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
6
,D是棱CC1的中點(diǎn).
(Ⅰ)證明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州二模)已知函數(shù)y=2sin(ωx+
π
3
)(ω>0)
的最小正周期為3π,則ω=
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案