如圖,四棱錐的底面為矩形,,,分別是的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面.
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)要證線面平行,先找線線平行;(Ⅱ)要證線面垂直,先證線面垂直,于是需找出圖形中的線線垂直關(guān)系,以方便于證明面面垂直.
試題解析:(Ⅰ)取中點(diǎn),連,
因為分別為的中點(diǎn),所以,且. 2分
又因為為中點(diǎn),所以,且. 3分
所以,.故四邊形為平行四邊形. 5分
所以,又平面,平面,
故平面,. 7分
(Ⅱ)設(shè),由∽及為中點(diǎn)得,
又因為,,所以,.
所以,又為公共角,所以∽.
所以,即. 10分
又,,
所以平面. 12分
又平面,所以平面平面. 14分
考點(diǎn):直線與平面平行的判定定理、直線與平面垂直的判定定理、平面與平面垂直的判定定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面平面,是正方形,,且,、、分別是線段、、的中點(diǎn).
(1)求證:平面;
(2)求異面直線、所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,側(cè)面是等邊三角形,在底面等腰梯形中,,,,,為的中點(diǎn),為的中點(diǎn),.
(1)求證:平面平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,且AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(Ⅱ)設(shè)平面CBF將幾何體EF-ABCD分割成的兩個錐體的體積分別為VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,,,異面直線與所成
的角為.
(Ⅰ)求證:;
(Ⅱ)設(shè)是的中點(diǎn),求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED是邊長為2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求幾何體ABCDFE的體積;
(Ⅱ)證明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱的側(cè)棱長為3,,且,、分別是棱、上的動點(diǎn),且
(1)證明:無論在何處,總有;
(2)當(dāng)三棱柱.的體積取得最大值時,求異面直線與所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com