【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)為O極點(diǎn),以x軸正半軸為極軸,圓C的極坐標(biāo)方程為ρ=4 .
(1)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)P(2,0)作斜率為1直線l與圓C交于A,B兩點(diǎn),試求 的值.
【答案】
(1)解:圓C的極坐標(biāo)方程為ρ=4 ,展開可得:ρ2=4 × ρ(cosθ﹣sinθ),
可得直角坐標(biāo)方程:x2+y2﹣4x+4y=0
(2)解:直線l的參數(shù)方程為: (t為參數(shù)),代入上述方程可得:t2+2 t﹣4=0.
t1+t2=﹣2 ,t1t2=﹣4,
則 = = = = =
【解析】(1)圓C的極坐標(biāo)方程為ρ=4 ,展開可得:ρ2=4 × ρ(cosθ﹣sinθ),利用互化公式即可得出直角坐標(biāo)方程.(2)直線l的參數(shù)方程為: (t為參數(shù)),代入上述方程可得:t2+2 t﹣4=0. = = = .
【考點(diǎn)精析】本題主要考查了直線與圓的三種位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(1)求與點(diǎn)P(3,5)關(guān)于直線l:x-3y+2=0對(duì)稱的點(diǎn)P′的坐標(biāo).
(2)已知直線l:y=-2x+6和點(diǎn)A(1,-1),過點(diǎn)A作直線l1與直線l相交于B點(diǎn),且|AB|=5,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex﹣ax2 , g(x)是f(x)的導(dǎo)函數(shù). (I)求g(x)的極值;
(II)證明:對(duì)任意實(shí)數(shù)x∈R,都有f′(x)≥x﹣2ax+1恒成立:
(Ⅲ)若f(x)≥x+1在x≥0時(shí)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣π<φ<0)在區(qū)間 上單調(diào)遞增,且函數(shù)值從﹣2增大到0.若 ,且f(x1)=f(x2),則f(x1+x2)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I)求函數(shù) 的最小正周期及對(duì)稱軸方程;
(II)求函數(shù) 的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(diǎn)(2,5),g(x)=(x+a)f(x).
(1)求曲線y=g(x)有斜率為0的切線,求實(shí)數(shù)a的取值范圍;
(2)若當(dāng)x=﹣1時(shí)函數(shù)y=g(x)取得極值,確定y=g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)正方體的玩具,六個(gè)面標(biāo)注了數(shù)字1,2,3,4,5,6,甲、乙兩位學(xué)生進(jìn)行如下游戲:甲先拋擲一次,記下正方體朝上的數(shù)字 ,再由乙拋擲一次,記下正方體朝上數(shù)字 ,若 就稱甲、乙兩人“默契配合”,則甲、乙兩人“默契配合”的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要分析學(xué)生初中升學(xué)考試的數(shù)學(xué)成績對(duì)高一年級(jí)數(shù)學(xué)學(xué)習(xí)有什么影響,在高一年級(jí)學(xué)生中隨機(jī)抽取10名學(xué)生,分析他們?nèi)雽W(xué)的數(shù)學(xué)成績(x)和高一年級(jí)期末數(shù)學(xué)考試成績(y)(如下表):
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
y | 65 | 78 | 52 | 85 | 92 | 89 | 73 | 98 | 56 | 75 |
(1)畫出散點(diǎn)圖;
(2)判斷入學(xué)成績(x)與高一期末考試成績(y)是否有線性相關(guān)關(guān)系;
(3)如果x與y具有線性相關(guān)關(guān)系,求出回歸直線方程;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com