拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率分別為k1、k2的兩條直線交拋物線C于A(x1,y1)、B(x2,y2)兩點(P、A、B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).

(1)求拋物線C的焦點坐標和準線方程;

(2)設(shè)直線AB上一點M滿足,證明線段PM的中點在y軸上;

(3)當λ=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍.

(1)解:由拋物線C的方程y=ax2(a<0=,得焦點坐標為(0,),準線方程為y=-.

(2)證明:設(shè)直線PA的方程為y-y0=k1(x-x0),直線PB的方程為y-y0=k2(x-x0).

    點P(x0,y0)和點A(x1,y1)的坐標是方程組

的解,將(2)代入(1)得ax2-k1x+k1x0-y0=0,于是x1+x0=,x1=-x0                (3)

    又點P(x0,y0)和點B(x2,y2)的坐標是方程組

的解.將(5)代入(4)得ax2-k2x+k2x0-y0=0,于是x2+x0=,x2=-x0.(6)

    由已知k2=-λk1,

    則x2=--x0.

    設(shè)點M的坐標為(xM,yM),由,則

xM===-x0.∴xM+x0=0,即線段PM的中點在y軸上.

(3)解:∵點P(1,-1)在拋物線y=ax2上,∴a=-1,拋物線的方程為y=-x2.

    由(3)式知x1=-k1-1,代入y=-x2得y1=-(k1+1)2.

    將λ=1代入(6)式得x2=k1-1,代入y=-x2得y2=-(k1-1)2.

∴A(-k1-1,-k12-2k1-1)、B(k1-1,-k12+2k1-1).

    于是=(k1+2,k12+2k1),

=(2k1,4k1).

·=2k1(k1+2)+4k1(k12+2k1)=2k1(k1+2)(2k1+1).

∵∠PAB為鈍角且P、A、B三點互不相同,故·<0,即2k1(k1+2)(2k1+1)<0.

∴k1<-2或-<k1<0.

    又點A的縱坐標y1滿足y1=-(k1+1)2,故

    當k1<-2時,y1<-1;

    當-<k1<0時,-1<y1<-.

∴∠PAB為鈍角時點A的縱坐標y1的取值范圍為(-∞,-1)∪(-1,-).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(P,A,B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設(shè)直線AB上一點M,滿足
BM
MA
,證明線段PM的中點在y軸上;
(Ⅲ)當λ=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于
A(x1,y1)B(x2,y2)兩點(P,A,B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設(shè)直線AB上一點M,滿足
BM
MA
,證明線段PM的中點在y軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1、k2的兩條直線分別交拋物線C于A(x1,y1)、B(x2,y2)兩點(P、A、B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1),
(1)設(shè)直線AB上一點M,滿足
BM
MA
,證明線段PM的中點在y軸上;
(2)當λ=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為y=x2,過(0,1)點的直線l與C相交于點A,B,證明:OA⊥OB(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過曲線上一點與以此點為切點的切線垂直的直線,叫做曲線在該點的法線.
已知拋物線C的方程為y=ax2(a>0,x≠0).點M(x0,y0)是C上任意點,過點M作C的切線l,法線m.
(I)求法線m與拋物線C的另一個交點N的橫坐標xN取值范圍;
(II)設(shè)點F是拋物線的焦點,連接FM,過點M作平行于y軸的直線n,設(shè)m與x軸的交點為S,n與x軸的交點為K,設(shè)l與x軸的交點為T,求證∠SMK=∠FMN

查看答案和解析>>

同步練習(xí)冊答案