【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣ =0截得的弦長(zhǎng)為2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A、B為動(dòng)直線y=k(x﹣1),k≠0與橢圓C的兩個(gè)交點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,試求出點(diǎn)M的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
【答案】解:(I)圓x2+y2=a2的圓心(0,0)到直線x﹣y﹣ =0的距離d= =1,
∴2=2 ,解得a2=2,又 = ,a2=b2+c2,
聯(lián)立解得:a2=2,c=1=b.
∴橢圓C的標(biāo)準(zhǔn)方程為: +y2=1.
(II)假設(shè)在x軸上存在定點(diǎn)M(m,0),使得 為定值.
設(shè)A(x1,y1),B(x2,y2),聯(lián)立 ,化為:(1+2k2)x2﹣4k2x+2k2﹣2=0,
則x1+x2= ,x1x2= .
=(x1﹣m,y1)(x2﹣m,y2)=(x1﹣m)(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣1)(x2﹣1)=(1+k2)x1x2﹣(m+k2)(x1+x2)+m2+k2
=(1+k2) ﹣(m+k2) +m2+k2
= ,
令2m2﹣4m+1=2(m2﹣2),解得m= .
因此在x軸上存在定點(diǎn)M( ,0),使得 為定值
【解析】(I)求出圓x2+y2=a2/span>的圓心(0,0)到直線x﹣y﹣ =0的距離d,利用2=2 ,解得a2,又 = ,a2=b2+c2,聯(lián)立解出即可得出.(II)假設(shè)在x軸上存在定點(diǎn)M(m,0),使得 為定值.設(shè)A(x1,y1),B(x2,y2),直線方程與橢圓方程聯(lián)立化為:(1+2k2)x2﹣4k2x+2k2﹣2=0,
利用根與系數(shù)的關(guān)系及其數(shù)量積運(yùn)算性質(zhì)可得 = ,令2m2﹣4m+1=2(m2﹣2),解得m即可得出.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用橢圓的標(biāo)準(zhǔn)方程,掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4 , 則x1x2x3x4取值范圍是( )
A.(60,96)
B.(45,72)
C.(30,48)
D.(15,24)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)都是正數(shù),a1=1,an+12=an2+ (n∈N*)
(1)求證: ≤an<2(n≥2)
(2)求證:12(a2﹣a1)+22(a3﹣a2)+…+n2(an+1﹣an)> ﹣ (n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訂TP過(guò)定點(diǎn) 且與圓N: 相切,記動(dòng)圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過(guò)點(diǎn)D(3,0)且斜率不為零的直線交曲線C于A,B兩點(diǎn),在x軸上是否存在定點(diǎn)Q,使得直線AQ,BQ的斜率之積為非零常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am , an , 使得 =4a1 , 則 + 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值4.
(I)求實(shí)數(shù)a,b的值;
(Ⅱ)當(dāng)a>0時(shí),求曲線y=f(x)在點(diǎn)(﹣2,f(﹣2))處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= e3x+me2x+(2m+1)ex+1有兩個(gè)極值點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣ ,1﹣ )
B.[﹣ ,1﹣ ]
C.(﹣∞,1﹣ )
D.(﹣∞,1﹣ )∪(1+ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且 .
(1)若復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量 方向平移 個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過(guò)軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過(guò)一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD底面是一個(gè)棱長(zhǎng)為2的菱形,且∠DAB=60°,各側(cè)面和底面所成角均為60°,則此棱錐內(nèi)切球體積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com