【題目】下列說法中,正確的是( )
A.命題“若x≠2或y≠7,則x+y≠9”的逆命題為真命題
B.命題“若x2=4,則x=2”的否命題是“若x2=4,則x≠2”
C.命題“若x2<1,則﹣1<x<1”的逆否命題是“若x<﹣1或x>1,則x2>1”
D.若命題p:x∈R,x2﹣x+1>0,q:x0∈(0,+∞),sinx0>1,則(¬p)∨q為真命題
【答案】A
【解析】解:A.命題“若x≠2或y≠7,則x+y≠9”的否命題為,“若x=2且y=7,則x+y=9”,為真命題,則命題的逆命題為真命題正確,故A正確,
B.命題“若x2=4,則x=2”的否命題是“若x2≠4,則x≠2”,故B錯誤,
C.命題“若x2<1,則﹣1<x<1”的逆否命題是“若x≤﹣1或x≥1,則x2≥1”,故C錯誤,
D.∵x2﹣x+1=(x﹣ )2+ >0恒成立,∴命題p為真命題,則¬p為假命題,
∵sinx∈[﹣1,1],∴x0∈(0,+∞),sinx0>1為假命題,則p是假命題,則(¬p)∨q為假命題.故D錯誤,
故選:A
【考點精析】利用四種命題對題目進行判斷即可得到答案,需要熟知原命題:若P則q; 逆命題:若q則p;否命題:若┑P則┑q;逆否命題:若┑q則┑p.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象( )
A.向左移動 個單位
B.向右移動 個單位
C.向左移動1個單位
D.向右移動1個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且2csinB= b.
(1)求角C的大小;
(2)若邊c=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點,若存在求出直線的方程l,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=x2 , 則當(dāng)x<0時,f(x)=﹣x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對稱,則對任意實數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號是(請將所有正確結(jié)論的序號填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,當(dāng)x>0時,f(x)=log2( +a).
(1)若函數(shù)f(x)過點(1,1),求此時函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+2log2x只有一個零點,求實數(shù)a的范圍;
(3)設(shè)a>0,若對任意實數(shù)t∈[ ,1],函數(shù)f(x)在[t,t+1]上的最大值與最小值的差不大于1,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數(shù)k的取值范圍.
(3)設(shè) ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調(diào)性,再根據(jù)結(jié)論確定f(m2﹣m+1)+f(﹣ )與0的大小關(guān)系;
(3)是否存在實數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域為[kea , keb].若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+2)2+y2=1,圓B:(x﹣2)2+y2=49,動圓P與圓A,圓B均相切.
(1)求動圓圓心P的軌跡方程;
(2)已知點N(2, ),作射線AN,與“P點 軌跡”交于另一點M,求△MNB的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com