等腰直角三角形ABC,直角邊長為6,AD是斜邊BC上的高,以AD為軸,把△ABD旋轉,使B-AD-C為60°的二面角,則此時BC等于(    )

A.              B.6               C.              D.3

解析:由AB=6,得BD=.∵AD⊥BD,AD⊥CD,∴∠BDC為二面角BADC的平面角.∴∠BDC=60°.∴BC=.

答案:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,C=90°,直角邊BC在直線2x+3y-6=0上,頂點A的坐標是(5,4),求邊AB 和AC所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等腰直角三角形ABC的斜邊所在的直線是3x-y+2=0,直角頂點是C(3,-2),則兩條直角邊AC,BC的方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•紅橋區(qū)二模)已知橢圓:
x2
a2
+
y2
b2
=l(a>b>0)的一個頂點坐標為B(0,1),若該橢圓的離心率等于
3
2

(1)求橢圓的方程.
(2)設Q是橢圓上任意一點,F(xiàn)1F2分別是左、右焦點,求∠F1QF2的取值范圍;
(3)以B為直角頂點作橢圓的內接等腰直角三角形ABC,判斷這樣的三角形存在嗎?若存在,有幾個?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,過直角頂點C在∠ACB內部任作一射線CM,與線段AB交于點M,求AM<AC的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等腰直角三角形ABC,E、F分別是斜邊BC的三等分點,則tan∠EAF=( 。
A、
3
3
B、
3
C、
4
3
D、
3
4

查看答案和解析>>

同步練習冊答案