函數(shù)f(x)在[-2,2]上的圖象如圖所示,則此函數(shù)的最小值是________.

-1
分析:題目是用圖象法表示的函數(shù),且是分段函數(shù),由圖象直接看出函數(shù)在每一段內(nèi)的值域,則函數(shù)的最小值可求.
解答:由圖象看出,當(dāng)x∈[-2,0)時,y∈[-1,0);
當(dāng)x∈[0,1)時,y∈[0,2);
當(dāng)x∈[1,2]時,y∈[,2].
所以,函數(shù)f(x)在[-2,2]上的最小值是-1.
故答案為-1.
點評:本題考查了分段函數(shù)的值域,分段函數(shù)的值域要分段求,最后取并集,分段函數(shù)的最小值是各段中的最小者,此題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>2x的解集為(-1,3)
(1)若方程f(x)=-7a有兩個相等的實數(shù)根,求f(x)的解析式
(2)若函數(shù)f(x)在[-2,1]上的最大值為10,求a的值及f(x)在[-2,11]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x+
ax
-2)
,其中a是大于0的常數(shù).
(1)求函數(shù)f(x)的定義域;
(2)當(dāng)a∈(1,4)時,求函數(shù)f(x)在[2,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)在x=x0處取得極值,則點(x0,f(x0))稱為函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一個極值點恰為坐標(biāo)系原點,且y=f(x)在x=1處的切線方程為3x+y-1=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對任意實數(shù)x均有f(x+2)=kf(x),其中k為已知的正常數(shù),且f(x)在區(qū)間[0,2]上有表達(dá)式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)求f(x)在[-2,2]上的表達(dá)式,并寫出函數(shù)f(x)在-2,2上的單調(diào)區(qū)間(不需證明);
(3)求函數(shù)f(x)在[-2,2]上的最小值,并求出相應(yīng)的自變量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)•ex定義域為[-2,t](t>-2.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(2)求證:f(t)>f(-2);
(3)當(dāng)1<t<4時,求滿足
f′(x0)
ex0
=
2
3
(t-1)2
的x0的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案