橢圓的左右焦點為、,一直線過交橢圓于、兩點,則的周長為   (  )
A.32B.16C.8D.4
B

試題分析:∵橢圓∴a=4,b=,c=3根據(jù)橢圓的定義∴AF1+AF2=2a=8,∴BF1+BF2=2a=8,∵AF1+BF1=AB,∴△ABF2的周長為4a=16,故選B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,為橢圓在軸正半軸上的焦點,兩點在橢圓上,且,定點.
(1)求證:當;
(2)若當時有,求橢圓的方程;
(3)在(2)的橢圓中,當、兩點在橢圓上運動時,試判斷 是否有最大值,若存在,求出最大值,并求出這時兩點所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P(x,y)為橢圓上一點,F為橢圓C的右焦點,若點M滿足,則的最小值為(      )
A.B.3C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線C:離心率是,過點,且右支上的弦過右焦點
(1)求雙曲線C的方程;
(2)求弦的中點的軌跡E的方程;
(3)是否存在以為直徑的圓過原點O?,若存在,求出直線的斜率k 的值.若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知有公共焦點的橢圓與雙曲線中心為原點,焦點在x軸上,左右焦點分別為F1,F2,且它們在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,雙曲線的離心率的取值范圍為(1,2).則該橢圓的離心率的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)F1、F2分別是橢圓(a>b>0)的左、右焦點,若在直線x=上存在P,使線段PF1的中垂線過點F2,則橢圓離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓E:的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為( 。
A.       B.
C.       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓M:的左,右焦點分別為,P為橢圓M上任一點,且的最大值的取值范圍是,其中,則橢圓M的離心率e的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓經(jīng)過點P(1.),離心率e=,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設(shè)直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為.問:是否存在常數(shù)λ,使得?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案