如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0,),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1,以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2,則( )

A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小
【答案】分析:連接BD、AC,假設(shè)AD=t,根據(jù)余弦定理表示出BD,進(jìn)而根據(jù)雙曲線的性質(zhì)可得到a的值,再由AB=2c,e=可表示出e1=,最后根據(jù)余弦函數(shù)的單調(diào)性可判斷e1的單調(diào)性;同樣表示出橢圓中的c'和a'表示出e2的關(guān)系式,最后令e1、e2相乘即可得到e1e2的關(guān)系.
解答:解:連接BD,AC設(shè)AD=t
則BD==
∴雙曲線中a=
e1=
∵y=cosθ在(0,)上單調(diào)減,進(jìn)而可知當(dāng)θ增大時(shí),y==減小,即e1減小
∵AC=BD
∴橢圓中CD=2t(1-cosθ)=2c∴c'=t(1-cosθ)
AC+AD=+t,∴a'=+t)
e2==
∴e1e2=×=1
故選B.
點(diǎn)評(píng):本題主要考查橢圓和雙曲線的離心率的表示,考查考生對圓錐曲線的性質(zhì)的應(yīng)用,圓錐曲線是高考的重點(diǎn)每年必考,平時(shí)要注意基礎(chǔ)知識(shí)的積累和練習(xí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高為3,O為AB中點(diǎn),PO⊥平面ABCD,垂足為O,PO=2,EA∥PO.
(1)求證:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一簡單組合體ABCDEF如圖所示,已知M、N、P分別為AF,BD,EF的中點(diǎn).
(1)求證:MN∥平面BCF;
(2)求證:AP⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1;幾何證明選講.
如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.
求證:DE•DC=AE•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北模擬)如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分別為CD、AB中點(diǎn),沿EF將梯形AFED折起,使得∠AFB=60°,點(diǎn)G為FB的中點(diǎn).
(1)求證:AG⊥平面BCEF
(2)求DG的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分別為AB、CD中點(diǎn),分別沿DE、CE把△ADE與△BCE折起,使A、B重合于點(diǎn)P.

(1)求證:PE⊥CD;
(2)若點(diǎn)P在面CDE的射影恰好是點(diǎn)F,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案