已知函數(shù)f(x)的圖像與函數(shù)h(x)=x++2的圖像關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若g(x)=f(x)+,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

答案:
解析:

  解:(1)設f(x)圖像上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在h(x)圖像上

  解:(1)設f(x)圖像上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在h(x)圖像上

  ∴2-y=-x++2,∴y=x+,即f(x)=x+

  (2)文:g(x)=(x+)·x+ax,即g(x)=x2+ax+1

  g(x)在(0,2]上遞減≥2,∴a≤-4

  理:g(x)=x+,∵(x)=1-

  g(x)在(0,2]上遞減,∴1-≤0在x∈(0,2]時恒成立.

  即a≥x2-1在x∈(0,2]時恒成立.

  ∵x∈(0,2]時,(x2-1)max=3  ∴a≥3


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044

已知函數(shù)f(x)=2acos2x+bsinxcosx,且f(0)=2,f()=,

(1)求使f(x)>2的x的集合;

(2)若α-β≠kπ(k∈Z),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044

已知函數(shù)f(x)=x3+(m-4)x2-3mx+(n-6)(x∈R)的圖象關于原點對稱,m,n為實常數(shù).

(1)求m,n的值;

(2)試用單調(diào)性的定義證明f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù)

(3)當x∈[-2,2]時,不等式f(x)≥(n-logma)logma恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省開平市長師中學2007年高考數(shù)學文科第一輪復習階段性考試卷 題型:044

解答題

已知函數(shù)在同一周期內(nèi)有最高點和最低點,求此函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:龍門中學、新豐一中、連平中學三校聯(lián)考試題、高三數(shù)學(理) 題型:044

解答題

已知函數(shù)恒過點

(1)

的值;

(2)

求函數(shù)的最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2007龍門中學、新豐一中、連平中學三校聯(lián)考試題、高三數(shù)學(文) 題型:044

解答題

已知函數(shù)恒過點

(1)

的值;

(2)

求函數(shù)的最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習冊答案