20.若函數(shù)式f(n)表示n2+1(n∈N*)的各位上的數(shù)字之和,
如142+1=197,1+9+7=17所以f(14)=17,
記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],k∈N*
則f2010(17)=8.

分析 先利用前幾項(xiàng)找到數(shù)列的特點(diǎn)或規(guī)律,fn(17)是從第一項(xiàng)起以3為周期的循環(huán)數(shù)列,再求f2010(17)即可.

解答 解:由172+1=290⇒f(17)=2+9+0=11,
112+1=122⇒f(11)=1+2+2=5,
52+1=26⇒f(5)=8
82+1=65⇒f(8)=11
112+1=122⇒f(11)=5
…⇒fn(17)是從第一項(xiàng)起以3為周期的循環(huán)數(shù)列,
又2010÷3的余數(shù)為3,故f2010(17)=f3(17)=f(5)=8.
故答案為:8

點(diǎn)評 本題考查了新定義型的題.關(guān)于新定義型的題,關(guān)鍵是理解定義,并會用定義來解題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a為正實(shí)數(shù),函數(shù)f(x)=ax2-a2x-$\frac{1}{a}$的圖象與x軸交于A,B兩點(diǎn),且A在B的左邊.
(1)解關(guān)于x不等式f(x)>f(1);
(2)求AB的最小值;
(3)如果a∈[1,2$\sqrt{2}$],求OA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+3x+2,\;x≥0}\\{{x^2}-3x+2,\;x<0}\end{array}}$,則不等式f(2x-1)>f(1)的解集為(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.動點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時針方向勻速旋轉(zhuǎn),6秒旋轉(zhuǎn)一周.已知時間t=0時,點(diǎn)A的坐標(biāo)是($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則當(dāng)0≤t≤6時,動點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是(  )
A.[0,1]B.[4,6]C.[1,3]D.[0,1]和[4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ln(ax+1)+$\frac{1-x}{1+x}$,x>0,其中a>0.
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在以O(shè)為極點(diǎn),x軸的正半軸為極軸,且單位長度相同的極坐標(biāo)系中,已知直線l1的極坐標(biāo)方程為ρsinθ+ρcosθ=1,直線l2的極坐標(biāo)方程為θ=$\frac{π}{3}$(ρ=R).
(1)將直線l1,l2化為直角坐標(biāo)方程;
(2)求兩直線l1與l2交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=ln(x+1).
(Ⅰ)求滿足f(1-2x)>f(x)的x的取值集合A;
(Ⅱ)設(shè)集合B={x|a-1<x<2a2},若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.甲乙兩位同學(xué)同住一小區(qū),甲乙倆同學(xué)都在7:00~7:20經(jīng)過小區(qū)門口.由于天氣下雨,他們希望在小區(qū)門口碰面結(jié)伴去學(xué)校,并且前一天約定先到者必須等候另一人5分鐘,過時即可離開.則他倆在小區(qū)門口碰面結(jié)伴去學(xué)校的概率是(  )
A.$\frac{5}{9}$B.$\frac{6}{11}$C.$\frac{8}{15}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.由曲線y=ex,y=e-x以及x=1所圍成的圖形的面積等于e+$\frac{1}{e}$-2.

查看答案和解析>>

同步練習(xí)冊答案