已知數(shù)列{an},a1=1,前n項和為Sn,且點P(an,an+1)(n∈N*)在直線x-y+1=0上,則
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=( 。
A.
n(n+1)
2
B.
2
n(n+1)
C.
2n
n+1
D.
n
2(n+1)
∵點P(an,an+1)(n∈N*)在直線x-y+1=0上
∴an-an+1+1=0
∴數(shù)列{an}是以1為首項,以1為公差的等差數(shù)列.
∴an=n
sn=
n(n+1)
2

1
sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)
=
2n
n+1

故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求數(shù)列{an}的通項公式;
(II)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a 1=
2
5
,且對任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求證:數(shù)列{
1
an
}為等差數(shù)列,并求{an}的通項公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a 1=
2
5
,且對任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通項公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是數(shù)列{an}的前n項和,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}:,,,…,,…,其中a是大于零的常數(shù),記{an}的前n項和為Sn,計算S1,S2,S3的值,由此推出計算Sn的公式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

同步練習冊答案