“x(x-3)≤0”是“|x-1|≤2”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
由|x-1|≤2,
得-1≤x≤3,
由x(x-3)≤0,
得0≤x≤3,
因?yàn)?1≤x≤3的范圍比0≤x≤3的范圍大,
所以x(x-3)≤0成立能推出|x-1|≤2成立,反之推出|x-1|≤2成立推不出x(x-3)≤0成立,
“x(x-3)≤0”是“|x-1|≤2”成立的充分不必要條件,
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內(nèi)任意x2,當(dāng)x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-3(x≤0)
x
1
2
(x>0)
,已知f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)
,若f(
π
6
)=f(
π
3
)
且f(x)在區(qū)間(
π
6
π
3
)
上有最小值,無最大值,則ω的值為( 。
A、
2
3
B、
5
3
C、
14
3
D、
38
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:宜都一中2008屆高三數(shù)學(xué)周練(5) 題型:044

已知f(x)=x(x-a)(x-b),點(diǎn)A(s,f(s)),B(t,f(t)).

(1)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)若函數(shù)f(x)的導(dǎo)函數(shù)滿足:當(dāng)|x|≤1時,有恒成立,求函數(shù)f(x)的解析表達(dá)式;

(3)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=,證明:不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年上海市徐匯區(qū)零陵中學(xué)高三3月綜合練習(xí)數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線上存在兩個不同點(diǎn)關(guān)于直線y=x對稱,求出其坐標(biāo);若曲線(p≠0)上存在兩個不同點(diǎn)關(guān)于直線y=x對稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并取加以研究.當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

同步練習(xí)冊答案