【題目】如圖,在四棱錐中,底面為菱形,已知,,
求證:平面平面ABCD;
求直線AE與平面CED的所成角的正弦值.
【答案】(1)見證明;(2)
【解析】
過D作,連結(jié)EO,推導(dǎo)出≌,,,從而面ABE,由此能證明平面平面ABCD;由,,,以O為坐標(biāo)原點(diǎn),分別以OE,OB,OD為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與平面CED的所成角的正弦值.
如圖,過D作,連結(jié)EO
,,,
≌,,,
,,
由勾股定理逆定理得,,
,,面ABE,面ABE,
面ABE,
面ABCD,平面平面ABCD.
由知,,,
如圖,以O為坐標(biāo)原點(diǎn),分別以OE,OB,OD為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
由已知得0,,,0,,2,,
,,,
設(shè)面CED的法向量y,,
則,取,得0,,
設(shè)直線AE與平面CED所成角為,
則,
直線AE與平面CED的所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)若函數(shù)存在零點(diǎn),求的取值范圍;
(2)已知函數(shù),若在區(qū)間上既有最大值又有最小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自古以來“民以食為天”,餐飲業(yè)作為我國(guó)第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )
A. 2010~2016年全國(guó)餐飲收入逐年增加
B. 2016年全國(guó)餐飲收入比2010年翻了一番以上
C. 2010~2016年全國(guó)餐飲收入同比增量最多的是2015年
D. 2010~2016年全國(guó)餐飲收入同比增量超過3000億元的年份有3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱臺(tái)中,底面是菱形,,,平面.
(1)若點(diǎn)是的中點(diǎn),求證://平面;
(2)棱BC上是否存在一點(diǎn)E,使得二面角的余弦值為?若存在,求線段CE的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)在軸上,且短軸的兩個(gè)頂點(diǎn)與其中一個(gè)焦點(diǎn)的連線構(gòu)成斜邊為的等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線交橢圓于兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以線段為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn)某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
月份 | ||||||
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
市場(chǎng)占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
請(qǐng)?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說明可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系;
求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司2018年2月份的市場(chǎng)占有率;
根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車擴(kuò)大市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000元輛和800元輛的A,B兩款車型報(bào)廢年限各不相同考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:
報(bào)廢年限 車型 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
經(jīng)測(cè)算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù)如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車型?
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),
回歸直線方程為其中:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四邊形為某橢圓的內(nèi)接矩形的充要條件是:它的四個(gè)頂點(diǎn)是橢圓的同心圓與它的四個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將甲、乙兩個(gè)學(xué)生在高二的6次數(shù)學(xué)測(cè)試的成績(jī)(百分制)制成如圖所示的莖葉圖,進(jìn)入高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個(gè)學(xué)生的考試成績(jī)預(yù)計(jì)同時(shí)有了大的提升:若甲(乙)的高二任意一次考試成績(jī)?yōu)?/span>,則甲(乙)的高三對(duì)應(yīng)的考試成績(jī)預(yù)計(jì)為.
(1)試預(yù)測(cè):高三6次測(cè)試后,甲、乙兩個(gè)學(xué)生的平均成績(jī)分別為多少?誰(shuí)的成績(jī)更穩(wěn)定?
(2)若已知甲、乙兩個(gè)學(xué)生的高二6次考試成績(jī)分別由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個(gè)學(xué)生的當(dāng)次成績(jī)之差的絕對(duì)值,求的平均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com