例1.已知點(diǎn)A(-1,-4),B(5,2),線段AB上的三等分點(diǎn)依次為P1、P2,求P1,P2的坐標(biāo)以及A,B分
P1P2
所成的比λ.
分析:利用線段AB上的三等分點(diǎn)依次為P1、P2,即
AP1
=
1
3
AB
,   
AP2
=
2
3
AB
,求得P1,P2的坐標(biāo),然后求解可得答案.
解答:解:由題意可得,
AB
=(6,6)
AP1
=
1
3
AB
,  
AP2
=
2
3
AB

所以
AP1
=(2,2),
AP2
=(4,4)
所以:
OP1
=
OA
+
AP1
=(1,-2)
0P2
=
OA
+
AP2
=(3,0)
P1(1,-2),P2(3,0)
A分
P1P2
所成的比λ
=-
1
2

B分
P1P2
所成的比λ
=-2
點(diǎn)評(píng):本題考查線段的定比分點(diǎn),考查學(xué)生計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例2:已知f(x)=ax2+bx+c的圖象過(guò)點(diǎn)(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
x2+12
對(duì)一切實(shí)數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過(guò)A、B點(diǎn)作直線l1:x=-2的垂線,對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問(wèn)是否存在實(shí)數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
進(jìn)一步思考問(wèn)題:若上述問(wèn)題中直線l1:x=-
a2
c
、點(diǎn)F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請(qǐng)給出你的判斷
 
 (填寫(xiě)“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)與向量、圓交匯.例5:已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點(diǎn),其中F1也是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點(diǎn)P(1,3)和圓O:x2+y2=b2,過(guò)點(diǎn)P的動(dòng)直線l與圓O相交于不同的兩點(diǎn)A,B,在線段AB上取一點(diǎn)Q,滿足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).問(wèn)點(diǎn)Q是否總在某一定直線上?若在,求出這條直線,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第4章 平面向量):4.5 定比分點(diǎn)和平移(解析版) 題型:解答題

例1.已知點(diǎn)A(-1,-4),B(5,2),線段AB上的三等分點(diǎn)依次為P1、P2,求P1,P2的坐標(biāo)以及A,B分

查看答案和解析>>

同步練習(xí)冊(cè)答案