如圖,四邊形ABCD內(nèi)接于⊙O,AB=BC.AT是⊙O的切線,∠BAT=55°,則∠D等于    
【答案】分析:連接AC,由弦切角定理知∠ACB=∠BAT=55°,又AB=BC得到∠ACB=∠CAB=55°,求出∠B,再由圓內(nèi)接四邊形的性質就可以求出∠D.
解答:解:如圖,連接AC,
由弦切角定理知∠ACB=∠BAT=55°,
∵AB=BC,
∴∠ACB=∠CAB=55°,
∴∠B=180°-2∠ACB=70°,
∴∠D=180°-∠B=110°.
故答案為:110°.
點評:本題利用了弦切角定理和圓內(nèi)接四邊形的性質,三角形內(nèi)角和定理求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長為a的正方形,點E是A′A的中點,A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點.
(1)求點C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習冊答案