【題目】紀(jì)念2016年10月1日開始上市通過市場調(diào)查,得到該紀(jì)念章每1枚的市場價(jià)單位:元)與上市時(shí)間單位:天)的數(shù)據(jù)如下:

市時(shí)間

4

10

36

市場價(jià)

90

51

90

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價(jià)上市時(shí)間變化關(guān)系并說明理由:①;;

(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格

【答案】(1);(2)上市天時(shí),最低價(jià)為

【解析】

試題分析:(1)隨著時(shí)間增加,減后增,①③為單調(diào)函數(shù),所以選②;2點(diǎn)中,解出,利用配方法求得函數(shù)當(dāng)時(shí)取得最小值為

試題解析:

(1)隨著時(shí)間增加,減后增,

所給的三個(gè)函數(shù)中顯然都是單調(diào)函數(shù),不滿足題意,

∴選擇………………………………6

(2)把點(diǎn),

………………………………8

…………………………10

,………………11

當(dāng)時(shí),最小值

:當(dāng)紀(jì)念章上市20天時(shí),該紀(jì)念章的市場價(jià)最低,最低市場價(jià)為26元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,).

(1)若的部分圖像如圖所示,的解析式;

(2)在(1)的條件下,求最小正實(shí)數(shù),使得函數(shù)的圖象向左平移個(gè)單位后所對應(yīng)的函數(shù)是偶函數(shù);

(3)若上是單調(diào)遞增函數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了判斷高中三年級(jí)學(xué)生選修文理科是否與性別有關(guān),現(xiàn)隨機(jī)抽取50名學(xué)生,得到2×2列聯(lián)表:

理科

文科

總計(jì)

13

10

23

7

20

27

總計(jì)

20

30

50

已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到K2≈4.844,則認(rèn)為選修文理科與性別有關(guān)系出錯(cuò)的可能性約為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)地區(qū)共有5個(gè)鄉(xiāng)鎮(zhèn),共30萬人其人口比例為32523從這30萬人中抽取一個(gè)300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān)則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<a<1,b>0則函數(shù)f(x)=ax+b的圖象一定經(jīng)過( )

A. 第一、二象限 B. 第二、四象限

C. 第一、二、四象限 D. 第二、三、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列表述正確的是( )

①歸納推理是由部分到整體的推理; ②歸納推理是由一般到一般的推理;

③演繹推理是由一般到特殊的推理; ④類比推理是由特殊到一般的推理;

⑤類比推理是由特殊到特殊的推理.

A. ①②③ B. ②③④ C. ②④⑤ D. ①③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,P為橢圓C上任意一點(diǎn),且最小值為0.

1求曲線C的方程;

2若動(dòng)直線均與橢圓C相切,且,試探究在x軸上是否存在定點(diǎn)B,使得點(diǎn)B到的距離之積恒為1?若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一1班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖.

1求分?jǐn)?shù)在的頻率及全班人數(shù);

2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程

焦點(diǎn)在軸上,焦距是,離心率

一個(gè)焦點(diǎn)為的等軸雙曲線

查看答案和解析>>

同步練習(xí)冊答案