奇函數(shù)y=f(x)的定義域為R,當(dāng)x≥0時,f(x)=2x-x2,設(shè)函數(shù)y=f(x),x∈[a,b]的值域為數(shù)學(xué)公式,則b的最小值為________.

-1
分析:由“x∈[a,b]的值域為”,可構(gòu)造函數(shù)y=,轉(zhuǎn)化為兩函數(shù)的交點問題,再利用奇偶性求得區(qū)間得到結(jié)果.
解答:根據(jù)題意:令2x-x2=
解得:x=1或x=
又∵y=f(x)是奇函數(shù)
∴[a,b]=[1,]或[a,b]=[-,-1]
∴b的最小值為:-1
故答案為-1.
點評:本題主要考查函數(shù)的定義域,值域和函數(shù)的單調(diào)性和奇偶性,還考查了轉(zhuǎn)化問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)y=f(x)的定義域為R,當(dāng)x≥0時,f(x)=2x-x2,設(shè)函數(shù)y=f(x),x∈[a,b]的值域為[
1
b
,
1
a
]
,則b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、給出下列4個命題:
①若一個函數(shù)的圖象與其反函數(shù)的圖象有交點,則交點一定在直線y=x上;
②函數(shù)y=f(1-x)的圖象與函數(shù)y=f(1+x)的圖象關(guān)于直線x=1對稱;
③若奇函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,則y=f(x)的周期為2a;
④已知集合A={1,2,3},B={4,5},則以A為定義域,以B為值域的函數(shù)有8個.
在上述四個命題中,所有不正確命題的序號是
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,且當(dāng)0<x≤1時,f(x)=log2x,則方程f(x)=
1
4
+f(0)
在區(qū)間(2010,2012)內(nèi)的所有實數(shù)根之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶山區(qū)一模)若奇函數(shù)y=f(x)的定義域為[-4,4],其部分圖象如圖所示,則不
等式f(x)ln(2x-1)<0的解集是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)y=f(x)的定義域為R,當(dāng)x≥0時,f(x)=2x-x2
(1)求函數(shù)y=f(x),x∈R的解析式;
(2)設(shè)函數(shù)y=f(x),x∈[a,b]的值域為[
1
b
,
1
a
]
,(a≠b)求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案