有一個半徑為1厘米的小球在一個內(nèi)壁棱長均為厘米的直三棱柱(直三棱柱指底面為三角形,側(cè)棱與底面垂直的三棱柱)封閉容器內(nèi)可以向各個方向自由運動,則該小球不可能接觸到的容器內(nèi)壁的面積是:(   )

科A.         B.      C.     D.

 

【答案】

A

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)山姆的意大利餡餅屋中設(shè)有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利 餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:
(1)一張大餡餅的概率;
(2)一張中餡餅的概率;
(3)一張小餡餅的概率;
(4)沒得到餡餅的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標(biāo)高一版(必修3) 2009-2010學(xué)年 第36期 總192期 北師大課標(biāo)版 題型:044

(意大利餡餅問題)山姆的意大利餡餅屋中設(shè)有一個投鏢靶.該靶為正方形板,邊長為18厘米,掛于前門附近的墻上,顧客花兩角五分的硬幣便可投一鏢,并有機會贏得一種意大利餡餅中的一個.投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)鏢擊中半徑為1厘米的最內(nèi)層圓形區(qū)域時,可得到一個大餡餅;當(dāng)鏢擊中半徑為1厘米到2厘米之間的環(huán)形區(qū)域時,可得到一個中餡餅;當(dāng)鏢擊中半徑為2厘米到3厘米之間的環(huán)形區(qū)域時,可得到一個小餡餅;如果鏢擊中靶上的其他部分,則得不到餡餅.假設(shè)每一位顧客都能投鏢中靶,并且每個圓的周邊線沒有寬度,即每個鏢不會擊在線上,試求一位顧客贏得下列各種餡餅的概率:

(1)一個大餡餅;(2)一個中餡餅;(3)一個小餡餅;(4)沒得到餡餅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(意大利餡餅問題)山姆的意大利餡餅屋中設(shè)有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:

(a)一張大餡餅,

(b)一張中餡餅,

(c)一張小餡餅,

(d)沒得到餡餅的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

山姆的意大利餡餅屋中設(shè)有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利 餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時.可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:
(1)一張大餡餅的概率;
(2)一張中餡餅的概率;
(3)一張小餡餅的概率;
(4)沒得到餡餅的概率.

查看答案和解析>>

同步練習(xí)冊答案