精英家教網 > 高中數學 > 題目詳情
如圖,已知PE切圓O于點E,割線PBA交圓O于A,B兩點,∠APE的平分線和AE、BE分別交于點C,D
(Ⅰ)求證:CE=DE;
(Ⅱ)求證:=
【答案】分析:(Ⅰ)通過弦切角定理以及角的平分線,直接證明三角形是等腰三角形,即可證明CE=DE;
(Ⅱ)利用切割線定理以及角的平分線定理直接求證:=即可.
解答:證明:(Ⅰ)∵PE切圓O于E,∴∠PEB=∠A,
又∵PC平分∠APE,∴∠CPE=∠CPA,
∴∠PEB+∠CPE=∠A+∠CPA,
∴∠CDE=∠DCE,即CE=DE.
(Ⅱ)因為PC平分∠APE∴,
又PE切圓O于點E,割線PBA交圓O于A,B兩點,
∴PE2=PB•PA,

=
點評:本題考查圓的切割線定理,弦切角定理的應用,考查邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•許昌二模)如圖,已知PE切圓O于點E,割線PBA交圓O于A,B兩點,∠APE的平分線和AE、BE分別交于點C,D
(Ⅰ)求證:CE=DE;
(Ⅱ)求證:
CA
CE
=
PE
PB

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇五校高三下學期期初教學質量調研數學卷(解析版) 題型:解答題

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點B,AC交圓O于點P,E為線段BC的中點.求證:OPPE

B.(矩陣與變換選做題)

已知M,N,設曲線y=sinx在矩陣MN對應的變換作用下得到曲線F,求F的方程.

C.(坐標系與參數方程選做題)

在平面直角坐標系xOy中,直線m的參數方程為t為參數);在以O為極點、射線Ox為極軸的極坐標系中,曲線C的極坐標方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長.

D.(不等式選做題)

x,y均為正數,且xy,求證:2x≥2y+3.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年寧夏銀川一中高三(上)第一次月考數學試卷(文科)(解析版) 題型:解答題

如圖,已知PE切圓O于點E,割線PBA交圓O于A,B兩點,∠APE的平分線和AE、BE分別交于點C,D
(Ⅰ)求證:CE=DE;
(Ⅱ)求證:=

查看答案和解析>>

科目:高中數學 來源:2013年河南省新鄉(xiāng)、許昌、平頂山高考數學二模試卷(文科)(解析版) 題型:解答題

如圖,已知PE切圓O于點E,割線PBA交圓O于A,B兩點,∠APE的平分線和AE、BE分別交于點C,D
(Ⅰ)求證:CE=DE;
(Ⅱ)求證:=

查看答案和解析>>

同步練習冊答案