不等式log
1
3
(-x)>-x-1的解集為
 
考點:其他不等式的解法
專題:不等式的解法及應用
分析:由題意可得函數(shù)y=log
1
3
(-x)的圖象在直線y=-x-1的上方,數(shù)形結(jié)合求得x的范圍.
解答: 解:由題意可得函數(shù)y=log
1
3
(-x)的圖象(圖中紅色部分)
在直線y=-x-1(圖中藍色部分)的上方,如圖所示:
故x的取值范圍為(-1,0),
故答案為:(-1,0).
點評:本題主要考查用圖象法解不等式,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
2-x(x<1)
1
2
(x≥1)
,若0<f (x0)<1,則x0的取值范圍是( 。
A、[1,+∞)
B、(1,+∞)
C、(-∞,1]
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合{(x,y)
.
y=-x+2
y=
1
2
x+2
}
⊆{(x,y)|y=3x+b},則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在四棱錐P-ABCD中,底面abcd是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD,設E、F分別為PC、BD的中點.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求空間幾何體BCDP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)現(xiàn)有資產(chǎn)4.2億,計劃平均每年增長8%,問要使資產(chǎn)達到10億,需幾年?(列出方程,利用二分法求解,結(jié)果取整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的方程為x2+y2-6x-8y=0.若等差數(shù)列{an}中的a1,a2,…,a11是該圓過點(3,8)的11條弦的長,則{an}的公差的最大值是( 。
A、
1
5
B、
2
5
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

參數(shù)方程為
x=-1+
3
t
y=2-t
(t為參數(shù))的直線的傾斜角( 。
A、
π
3
B、
π
6
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,E為正方體的棱AA1的中點,F(xiàn)為棱AB上的一點,且∠C1EF=90°,則AF:FB=( 。
A、1:1B、1:2
C、1:3D、1:4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax2+x-1+3a(a∈R)在區(qū)間[-1,1]上有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案