1.下列程序語句正確的是( 。
A.輸出語句PRINT A=4B.輸入語句INPUT x=3
C.賦值語句A=A*A+A-3D.賦值語句55=a

分析 根據(jù)輸出語句的格式,可以判斷A的對錯,根據(jù)輸入語句的格式,可以判斷B的對錯;根據(jù)賦值語句的格式,可以判斷C,D的對錯;進而得到答案.

解答 解:輸出語句PRINT A=4,命令動詞PRINT后面應寫成“A=“,4,故A錯誤;
輸入語句INPUT  x=3中,命令動詞INPUT 后面應寫成“=“,3,故B錯誤;
賦值語句 A=A*A+A-3表示將不等式的值賦值給A,故C正確;
賦值語句的表示形式為:變量=表達式(其中“=”為賦值號),故D錯誤.
故選:C.

點評 本題考查的知識點是賦值語句、輸入、輸出語句,熟練掌握算法中基本語句的功能及格式是解答本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知復數(shù)$ω=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$
(1)分別計算ω2 和$\frac{1}{1+ω}$的值;
(2)在復平面內(nèi),復數(shù)ω對應的向量為$\overrightarrow{OA}$,復數(shù)ω2對應的向量為$\overrightarrow{OB}$.求向量$\overrightarrow{AB}$對應的復數(shù)z及復數(shù)z的模.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.執(zhí)行如圖所示的程序框圖,若m=4,則輸出的結果為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在等差數(shù)列{an}中,an≠0,an-1-$a_n^2$+an+1=0(n≥2),若S2n-1=38,則n=( 。
A.38B.20C.10D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓C:(x-1)2+(y-1)2=1和點M(2,3).
(1)過點M向圓C引切線l,求直線l的方程;
(2)求以點M為圓心,且被直線y=2x+4截得的弦長為4的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)y=f(x)的圖象與y=10x的圖象關于直線y=x對稱,則f(3)+f($\frac{10}{3}$)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.直線y=$\frac{1}{2}$x+b能作為下列函數(shù)y=f(x)的切線有( 。
①f(x)=$\frac{1}{x}$;②f(x)=lnx;③f(x)=sinx;④f(x)=-ex
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,圖案共分9個區(qū)域,有6種不同顏色的涂料可供涂色,每個區(qū)域只能涂一種顏色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相鄰區(qū)域的顏色不相同,則涂色方法有( 。
A.360種B.720種C.780種D.840種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=$\frac{m}{x}$,g(x)=$\frac{{x}^{2}+m}{x}$,且對任意x1>x2≥2,都有f(x1)-f(x2)>x2-x1
(1)判斷g(x)在(2,+∞)上的單調(diào)性;
(2)設集合A={x|f(x)=2,x>2},證明:A=∅.

查看答案和解析>>

同步練習冊答案