已知橢圓的右焦點為F2(1,0),點 在橢圓上.
(1)求橢圓方程;
(2)點在圓上,M在第一象限,過M作圓的切線交橢圓于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.
科目:高中數(shù)學 來源: 題型:
AC |
A、
| ||
B、2 | ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年黃岡中學二模理)如圖,已知橢圓的右焦點為F,過F的直線(非x軸)交橢圓于M、N兩點,右準線交x軸于點K,左頂點為A.
(1)求證:KF平分∠MKN;
(2)直線AM、AN分別交準線于點P、Q,設直線MN的傾斜角為,試用表示線段PQ的長度|PQ|,并求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(14分)已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。
(1)已知橢圓的離心率;
(2)若的最大值為49,求橢圓C的方程。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試(重慶卷)數(shù)學理工類模擬試卷(三) 題型:解答題
如圖,已知橢圓的右焦點為F,過F的直線(非x軸)交橢圓于M、N兩點,右準線交x軸于點K,左頂點為A.
(Ⅰ)求證:KF平分∠MKN;
(Ⅱ)直線AM、AN分別交準線于點P、Q,
設直線MN的傾斜角為,試用表示
線段PQ的長度|PQ|,并求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣東省高考沖刺強化訓練試卷十三文科數(shù)學 題型:解答題
(本小題滿分14分)已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com