【題目】甲、乙兩人玩一種游戲,游戲規(guī)則如下:先將籌碼放在如下表的正中間D處,投擲一枚質(zhì)地均勻的硬幣,若正面朝上,籌碼向右移動一格;若反面朝上,籌碼向左移動一格.

A

B

C

D

E

F

G

30

5

10

10

5

20

30


(1)將硬幣連續(xù)投擲三次,現(xiàn)約定:若籌碼停在A或B或C或D處,則甲贏;否則,乙贏.問該約定對乙公平嗎?請說明理由.
(2)設甲、乙兩人各有100個積分,籌碼停在D處,現(xiàn)約定: ①投擲一次硬幣,甲付給乙10個積分;乙付給甲的積分數(shù)是,按照上述游戲規(guī)則籌碼所在表中字母A﹣G下方所對應的數(shù)目;
②每次游戲籌碼都連續(xù)走三步,之后重新回到起始位置D處.
你認為該規(guī)定對甲、乙二人哪一個有利,請說明理由.

【答案】
(1)解:該約定對乙公平.

將硬幣連續(xù)投擲三次,共有以下8種情況:

D→C→B→A,D→C→B→C,D→C→D→E,D→C→D→C,

D→E→F→G,D→E→F→E,D→E→D→E,D→E→D→C.

籌碼停在A或B或C或D處有4種情況,

即籌碼停在A或B或C或D為:p= ,

∴該約定對乙公平


(2)解:該規(guī)定對甲有利.

根據(jù)(1)中所列的8種情況可得乙付給甲的積分數(shù)可能是20,25,30,45,55,

設乙付給甲的積分為X,

P(X=20)= ,P(X=25)= ,P(X=30)=

P(X=45)= ,P(X=55)= ,

可得分布列為:

X

20

25

30

45

55

P

E(X)= = >30,

∴該規(guī)定對甲有利.


【解析】(1)利用將硬幣連續(xù)投擲三次,列舉出所有8種情況,籌碼停在A或B或C或D處有4種情況,即籌碼停在A或B或C或D為 ,從而得到該約定對乙公平.(2)乙付給甲的積分數(shù)可能是20,25,30,45,55,設乙付給甲的積分為X,求出E(X)= >30,從而該規(guī)定對甲有利.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(2015·江蘇)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的個數(shù)。
(1)寫出f(6)的值;
(2)當n≥6時,寫出f(n)的表達式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點為 , 是橢圓上一點,若 ,
(1)求橢圓的方程;
(2)直線l過右焦點 (不與x軸重合)且與橢圓相交于不同的兩點A,B,在x軸上是否存在一個定點P(x0 , 0),使得 的值為定值?若存在,寫出P點的坐標(不必求出定值);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某區(qū)選派7名隊員代表本區(qū)參加全市青少年圍棋錦標賽,其中3名來自A學校且1名為女棋手,另外4名來自B學校且2名為女棋手.從這7名隊員中隨機選派4名隊員參加第一階段的比賽.
(1)求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;
(2)設X為選出的4名隊員中A、B兩校人數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,若函數(shù)f(x)有四個零點,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣e)
B.(﹣∞,﹣
C.(﹣∞,﹣
D.(﹣∞,﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學生中,用分層抽樣的方法選取28人參加一項活動,則從身高在[120,130)內(nèi)的學生中選取的人數(shù)應為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為 ,F(xiàn)1 , F2分別為橢圓的左右焦點,P為橢圓上任意一點,△PF1F2的周長為 ,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點F2作垂直于x軸的直線,與橢圓相交于M,N兩點,與線段AB相交于一點(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時直線l的方程;
(Ⅲ)若|AB|=2,試判斷直線l與圓x2+y2=1的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP的中點,將△PAD沿AD折起,使得PD⊥CD.

(Ⅰ)若E是PC的中點,求證:AP∥平面BDE;
(Ⅱ)求證:平面PCD⊥平面ABCD;
(Ⅲ)求二面角A﹣PB﹣C的大。

查看答案和解析>>

同步練習冊答案