已知函數(shù)

(I)若的極值點(diǎn),求的極值;

(Ⅱ)若函數(shù)上的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,求解函數(shù)的機(jī)制和函數(shù)單調(diào)性的逆用問(wèn)題。

 

【答案】

解:(Ⅰ) ,  2分

,令解得

根據(jù)列表,得到函數(shù)的極值和單調(diào)性

x

3

+

0

-

0

+

極大值

極小值

的極大值為 ,的極小值為             6分

(Ⅱ)  是R上的單調(diào)遞增函數(shù)轉(zhuǎn)化為在R上恒成立

從而有,  10分  解得a[-3,3]

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),若f(x)=x,則稱(chēng)x為f(x)的“不動(dòng)點(diǎn)”;若f(f(x))=x,則稱(chēng)x為f(x)的“穩(wěn)定點(diǎn)”.記集合A={x|f(x)=x},B={x|f(f(x))=x}
(1)已知A≠∅,若f(x)是在R上單調(diào)遞增函數(shù),是否有A=B?若是,請(qǐng)證明.
(2)記|M|表示集合M中元素的個(gè)數(shù),問(wèn):(i)若函數(shù)f(x)=ax2+bx+c(a≠0),若|A|=0,則|B|是否等于0?若是,請(qǐng)證明,(ii)若|B|=1,試問(wèn):|A|是否一定等于1?若是,請(qǐng)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax(a∈R).
(Ⅰ) 寫(xiě)出函數(shù)y=f(x)的圖象恒過(guò)的定點(diǎn)坐標(biāo);
(Ⅱ)直線(xiàn)L為函數(shù)y=φ(x)的圖象上任意一點(diǎn)P(x0,y0)處的切線(xiàn)(P為切點(diǎn)),如果函數(shù)y=φ(x)圖象上所有的點(diǎn)(點(diǎn)P除外)總在直線(xiàn)L的同側(cè),則稱(chēng)函數(shù)y=φ(x)為“單側(cè)函數(shù)”.
(i)當(dāng)a=
1
2
判斷函數(shù)y=f(x)是否為“單側(cè)函數(shù)”,若是,請(qǐng)加以證明,若不是,請(qǐng)說(shuō)明理由.
(i i)求證:當(dāng)x∈(-2,+∞)時(shí),ex+
1
2
x≥ln(
1
2
x+1)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(12分)已知函數(shù)

(I)若的極值點(diǎn),求上的最小值和最大值;

(Ⅱ)若上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù).

(I)求函數(shù)的單調(diào)減區(qū)間;

(II)若是第一象限角,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案