已知橢圓C:
x2
4
+
y2
2
=1
,直線l:y=ax+b(a,b∈R)
(1)請你給出a,b的一組值,使直線l和橢圓C相交
(2)直線l和橢圓C相交時(shí),a,b應(yīng)滿足什么關(guān)系?
(3)若a+b=1,試判斷直線l和橢圓C的位置關(guān)系;
(4)請你在第(3)問的基礎(chǔ)上添加一個(gè)合適的條件,求出直線l的方程,
(5)先將試題中的橢圓方程改為雙曲線方程
x2
4
-
y2
2
=1
,或改為拋物線方程y2=4x,再在第(4)問添加的條件中選擇一個(gè),求出直線l的方程.
分析:(1)取a=1,b=0,則直線l:y=x和橢圓C相交;
(2)直線l:y=ax+b代入橢圓C:
x2
4
+
y2
2
=1
,利用直線l和橢圓C相交,可得△>0,即可確定a,b應(yīng)滿足的關(guān)系;(3)由a+b=1,可得直線l恒過(1,1),進(jìn)而可得(1,1)在橢圓內(nèi),即可判斷直線l和橢圓C恒相交;
(4)添加條件:直線l過點(diǎn)(2,0),則a=-1,可求直線l的方程;
(5)橢圓方程改為雙曲線方程
x2
4
-
y2
2
=1
,或改為拋物線方程y2=4x,添加條件:直線l過點(diǎn)(2,0),可得直線l的方程.
解答:解:(1)取a=1,b=0,則直線l:y=x和橢圓C相交;
(2)直線l:y=ax+b代入橢圓C:
x2
4
+
y2
2
=1
,可得(1+2a2)x2+4abx+2b2-4=0
∵直線l和橢圓C相交,∴△=(4ab)2-4(1+2a2)(2b2-4)>0,∴b2-4a2-2<0
(3)∵a+b=1,∴b=1-a,∴y=ax+1-a,即y-1=a(x-1),∴直線l恒過(1,1)
(1,1)代入橢圓C:
x2
4
+
y2
2
=1
,可得
x2
4
+
y2
2
<1
,所以(1,1)在橢圓內(nèi)
所以直線l和橢圓C恒相交;
(4)添加條件:直線l過點(diǎn)(2,0),則a=-1,∴直線l的方程為x+y-2=0;
(5)橢圓方程改為雙曲線方程
x2
4
-
y2
2
=1
,或改為拋物線方程y2=4x,添加條件:直線l過點(diǎn)(2,0),則a=-1,∴直線l的方程為x+y-2=0.
點(diǎn)評:本題是開放題,考查直線與橢圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x24
+y2=1
,直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn).
(1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值;若不是,請說明理由;
(2)求△AOB面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知橢圓C:
x2
4
+
y2
3
=1
和點(diǎn)P(4,0),垂直于x軸的直線與橢圓C交于A,B兩點(diǎn),連結(jié)PB交橢圓C于另一點(diǎn)E.
(Ⅰ)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)證明直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知橢圓C:
x2
4
+y2=1
,直線l與橢圓C相交于A、B兩點(diǎn),
OA
OB
=0
(其中O為坐標(biāo)原點(diǎn)).
(1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值,若不是,請說明理由;
(2)求|OA|•|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知定點(diǎn)F1(-2,0)、F2(2,0),動(dòng)點(diǎn)N滿足|
ON
|=1(O為坐標(biāo)原點(diǎn)),
F1M
=2
NM
,
MP
MF2
(λ∈R),
F1M
PN
=0,求點(diǎn)P的軌跡方程.
精英家教網(wǎng)
(2)如圖2,已知橢圓C:
x2
4
+y2=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓上,且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N,
(。┰O(shè)直線AP、BP的斜率分別為k1、k2,求證:k1•k2為定值;
(ⅱ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案