已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.
(Ⅰ);(2)單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是;(3)
解析試題分析:(Ⅰ)由函數(shù),得,又由曲線在和處的切線互相平行,則兩切線的斜率相等地,即,因此可以得到關(guān)于的等式,從而可求出.
(Ⅱ)由,令,則,,因此需要對(duì)與0,,2比較進(jìn)行分類討論:①當(dāng)時(shí),在區(qū)間上有,在區(qū)間上有;②當(dāng)時(shí),在區(qū)間和上有,在區(qū)間上有;③當(dāng)時(shí),有;④當(dāng)時(shí),區(qū)間和上有,在區(qū)間上有,綜上得的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.
(Ⅲ)由題意可知,在區(qū)間上有函數(shù)的最大值小于的最大值成立,又函數(shù)在上的最大值,由(Ⅱ)知,①當(dāng)時(shí),在上單調(diào)遞增,故,所以,,解得,故;②當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,,由可知,,,所以,,;綜上所述,所求的范圍為.
試題解析:. 2分
(Ⅰ),解得. 3分
(Ⅱ). 5分
①當(dāng)時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求證:當(dāng)時(shí),;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,現(xiàn)要在邊長(zhǎng)為的正方形內(nèi)建一個(gè)交通“環(huán)島”.正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運(yùn)算中取)
(2)若中間草地的造價(jià)為元,四個(gè)花壇的造價(jià)為元,其余區(qū)域的造價(jià)為元,當(dāng)取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若與在處相切,試求的表達(dá)式;
(Ⅱ)若在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明不等式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間內(nèi),另一個(gè)在區(qū)間外,
求的取值范圍;
(3)已知且函數(shù)在上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是二次函數(shù),不等式的解集是,且在點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)數(shù)根?
若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=在x=0,x=處存在極值。
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)函數(shù)y=f(x)的圖象上存在兩點(diǎn)A,B使得△AOB是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍;
(Ⅲ)當(dāng)c=e時(shí),討論關(guān)于x的方程f(x)=kx(k∈R)的實(shí)根個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義函數(shù)為的階函數(shù).
(1)求一階函數(shù)的單調(diào)區(qū)間;
(2)討論方程的解的個(gè)數(shù);
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com