已知|an-e|<1,求證:|an|<|e|+1
【答案】分析:本題應用絕對值三角不等式進行放縮即可證明,絕對值三角不等式是指:|a|-|b|≤|a±b|≤|a|+|b|.
解答:證:根據(jù)絕對值不等式得:
|an|-|e|≤|an-e|,
∵|an-e|<1
∴|an|-|e|<1.
∴|an|<|e|+1.
點評:從已知條件出發(fā),利用定義、公理、定理、某些已經(jīng)證明過的不等式及不等式的性質經(jīng)過一系列的推理、論證等而推導出所要證明的不等式,這個證明方法叫綜合法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、已知|an-e|<1,求證:|an|<|e|+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=1且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1)

(1)用數(shù)學歸納法證明:an≥2(n≥2)
(2)設bn=
an+1-an
an
,證明數(shù)列{bn}的前n項和Sn
7
4

(3)已知不等式ln(1+x)<x對x>0成立,證明:an<2e
3
4
(n≥1)(其中無理數(shù)e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)它的兩個焦點為F1(-5
3
,0),F(xiàn)2(5
3
,0),P為橢圓E上一點(點P在第三象限),且△F1 F2的周長等于20+10
3

(Ⅰ)求橢圓E的方程;
(Ⅱ)若以點P為圓心的圓經(jīng)過橢圓E的左頂點M與點C(-2,0),直線MP交圓P于另一點N,試在橢圓E上找一點A,使得
AM
AN
取得最小值,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左頂點是A,過焦點F(c,0)(c>0,為橢圓的半焦距)作傾斜角為θ的直線(非x軸)交橢圓于M,N兩點,直線AM,AN分別交直線x=
a2
c
(稱為橢圓的右準線)于P,Q兩點.
(1)若當θ=30°時有
MF
=3
FN
,求橢圓的離心率;
(2)若離心率e=
2
2
,求證:
FP
FQ
為定值.

查看答案和解析>>

同步練習冊答案